Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (1): 129-134    DOI: 10.3866/PKU.WHXB201311201
Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation
LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
Download:   PDF(1117KB) Export: BibTeX | EndNote (RIS)      


Pd nanoparticles (NPs) supported on a metal-organic framework (MOF), MIL-53(Al) (MIL: Materials of Institut Lavoisier), were prepared using the incipient wetness impregnation method. The structures of the synthesized Pd/MIL-53(Al) catalysts were determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The same peaks were observed in the XRD patterns of Pd/MIL-53(Al) before and after the catalytic reaction, confirming that the integrity of the MIL-53(Al) support was maintained. The TEM results indicated that the crystalline porous structure of MIL-53(Al) favored the formation of highly dispersed Pd NPs of average size 2.21 nm. The heterogeneous catalytic composite materials exhibited high activities for CO oxidation, with full conversion at 115 ℃. The catalytic activity and structure of Pd/MIL-53(Al) were stable after several reaction runs.

Key wordsMetal-organic framework      MIL-53(Al)      Palladium nanoparticle      Heterogeneous catalysis      CO oxidation     
Received: 26 August 2013      Published: 20 November 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21073235, 21173270, 21177160) and National High-Tech Research and Development Program of China (863) (2013AA061902).

Corresponding Authors: ZHAO Zhen, LIU Jian     E-mail:;
Cite this article:

LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation. Acta Phys. Chim. Sin., 2014, 30(1): 129-134.

URL:     OR

(1) Wang, R.; He, H.; Liu, L. C.; Dai, H. X.; Zhao, Z. Catal. Sci. Technol. 2012, 2, 575. doi: 10.1039/c2cy00417h
(2) Li, L.;Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.;Wang, X.D.; Zhang, T. J. Catal. 2013, 299, 90. doi: 10.1016/j.jcat.2012.11.019
(3) Zhan, Y. Y.; Cai, G. H.; Zheng, Y.; Shen, X. N.; Zheng, Y.;Wei,K. M. Acta Phys. -Chim. Sin. 2008, 24, 171. [詹瑛瑛, 蔡国辉,郑勇, 沈小女, 郑瑛, 魏可镁. 物理化学学报, 2008, 24,171.] doi: 10.3866/PKU.WHXB20080131
(4) Liang, Q.; Liu, J.;Wei, Y. C.; Zhao, Z.; MacLachlan, J. M.Chem. Commun. 2013, 49, 8928. doi: 10.1039/c3cc44500c
(5) Wei, Y. C.; Liu, J.; Zhao, Z.; Chen, Y.; Xu, C.; Duan, A. J.;Jiang, G. Y.; He, H. Angew. Chem. Int. Edit. 2011, 50, 2326. doi: 10.1002/anie.201006014
(6) Müller, M.; Turner, S.; Lebedev, O. I.;Wang, Y.; Tendeloo, G.;Fischer, R. A. Eur. J. Inorg. Chem. 2011, 1876.
(7) Jiang, H.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. doi: 10.1021/ja1099006
(8) Hermannsdorfer, J.; Kempe, R. Chem. Eur. J. 2011, 17, 8071.doi: 10.1002/chem.v17.29
(9) Gu, X.; Lu, Z.; Jiang, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2011, 133, 11822. doi: 10.1021/ja200122f
(10) Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau,T.; Ferey, G. J. Am. Chem. Soc. 2005, 127, 13519. doi: 10.1021/ja054668v
(11) Esken, D.; Turner, S.; Lebedev, O. I.; Tendeloo, G. V.; Fischer,R. A. Chem. Mater. 2010, 22, 6393. doi: 10.1021/cm102529c
(12) Luz, I.; Xamena, F. X.; Corma, A. J. Catal. 2010, 276, 134. doi: 10.1016/j.jcat.2010.09.010
(13) Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2010, 49, 6766. doi: 10.1021/ic101125m
(14) Aguado, S.; Canivet, J.; Schuurman, Y.; Farrusseng, D. J. Catal.2011, 248, 207.
(15) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.;Waltz, F.;Wiebcke,M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. doi: 10.1002/chem.v17.24
(16) Phan, N.; Le, K.; Phan, T. D. Appl. Catal. A-Gen. 2010, 382,246. doi: 10.1016/j.apcata.2010.04.053
(17) Gao, S.; Zhao, N.; Shu, M.; Che, S. Appl. Catal. A-Gen. 2010,388, 196. doi: 10.1016/j.apcata.2010.08.045
(18) Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem. Eur. J.2008, 14, 8456. doi: 10.1002/chem.v14:28
(19) Liu, H. L.; Liu, Y. L.; Li, Y.W.; Tang, Z. Y.; Jiang, H. F. J. Phys. Chem. C 2010, 114, 13362.
(20) Xamena, F.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007,250, 294. doi: 10.1016/j.jcat.2007.06.004
(21) Dang, T. T.; Zhu, Y.; Ghosh, S. C.; Chen, A.; Chai, C.; Seayad,A. M. Chem. Commun. 2012, 48, 1805. doi: 10.1039/c2cc16808a
(22) Huang, Y.; Lin, Z.; Cao, R. Chem. Eur. J. 2011, 17, 12706. doi: 10.1002/chem.201101705
(23) Zhang, M.; Guan, J.; Zhang, B.; Su, D.;Williams, C. T.; Liang,C. Catal. Lett. 2012, 42, 313.
(24) Goesten, M. G.; Alcaniz, J.; Fernandez, E. V.; Gupta, K.;Stavitski, E.; Bekkum, H.; Gascon, J.; Kapteijn, F. J. Catal.2011, 281, 177. doi: 10.1016/j.jcat.2011.04.015
(25) Zhou, Y. X.; Liang, S. G.; Song, J. L.;Wu, T. B.; Hu, S. Q.; Liu,H. Z.; Jiang, T.; Han, B. X. Acta Phys. -Chim. Sin. 2010, 26,939. [周印羲, 梁曙光, 宋金良, 吴天斌, 胡素琴, 刘会贞,姜涛, 韩布兴. 物理化学学报, 2010, 26, 939.] doi: 10.3866/PKU.WHXB20100406
(26) Jiang, H.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q.J. Am. Chem. Soc. 2009, 131, 11302. doi: 10.1021/ja9047653
(27) El-Shall, M.; Abdelsayed, V.; Khder, A. S.; Hassan, H.; El-Kaderi, H.; Reich, T. J. Mater. Chem. 2009, 19, 7625. doi: 10.1039/b912012b
(28) Ye, J.; Liu, C. Chem. Commun. 2011, 47, 2167. doi: 10.1039/c0cc04944a
(29) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.;Henry, M.; Bataille, T.; Ferey, G. Chem. Eur. J. 2004, 10, 1373.
(30) Chan-Thaw, C. A.; Katekomol, P. D.; Thomas, A. L. Nano Lett.2010, 10, 537. doi: 10.1021/nl904082k
(31) Zhou, Y.; Xiang, Z. H.; Cao, D. P.; Liu, C. J. Chem. Commun.2013, 49, 5633. doi: 10.1039/c3cc00287j

[1] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[2] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2424-2437.
[3] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2301-2309.
[4] GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1674-1680.
[5] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1801-1809.
[6] LI Xiao-Lei, TAO Shuo, LI Ke-Da, WANG Ya-Song, WANG Ping, TIAN Zhi-Jian. In situ Synthesis of ZIF-8 Membranes with Gas Separation Performance in a Deep Eutectic Solvent[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1495-1500.
[7] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[8] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1753-1760.
[9] LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong. Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2366-2374.
[10] XU Hong, TONG Min-Man, WU Dong, XIAO Gang, YANG Qing-Yuan, LIU Da-Huan, ZHONG Chong-Li. Computational Study of Metal-Organic Frameworks for Removing H2S from Natural Gas[J]. Acta Phys. Chim. Sin., 2015, 31(1): 41-50.
[11] JIANG Jun, LI Gang, KONG Ling-Hao. Hydrogenation of Nitrobenzene Catalyzed by Metal-Organic Framework-Supported Ni Nanoparticles[J]. Acta Phys. Chim. Sin., 2015, 31(1): 137-144.
[12] TAN Xiao-He, ZHOU Gong-Bing, DOU Rong-Fei, PEI Yan, FAN Kang-Nian, QIAO Ming-Hua, SUN Bin, ZONG Bao-Ning. Partial Hydrogenation of Benzene to Cyclohexene over Novel Ru-B/MOF Catalysts[J]. Acta Phys. Chim. Sin., 2014, 30(5): 932-942.
[13] TAN Hai-Yan, WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(4): 715-722.
[14] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(2): 382-388.
[15] WANG Zhao-Yang, LI Gang, SUN Zhi-Guo. Denitrogenation through Adsorption to Sulfonated Metal-Organic Frameworks[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2422-2428.