Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (1): 141-149    DOI: 10.3866/PKU.WHXB201311211
CATALYSIS AND SURFACE SCIENCE     
Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties
XING Wei-Nan1, NI Liang1, YAN Xue-Sheng2, LIU Xin-Lin3, LUO Ying-Ying1, LU Zi-Yang1, YAN Yong-Sheng1, HUO Peng-Wei1
1 School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China;
2 JiangSu BeiSiTi Environmental Technology Project Co., Ltd., Zhenjiang 212013, Jiangsu Province, P. R. China;
3 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China
Download:   PDF(1905KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A novel photocatalyst, C@CdS/halloysite nanotubes (HNTs), was synthesized using a facile and effective pyrolytic method. The as-prepared photocatalyst was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area measurements, and X-ray energy dispersive, ultraviolet-visible diffuse reflectance, Fourier-transform infrared, specific surface area, and Raman spectroscopies. The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible-light irradiation. The influence of different pyrolysis temperatures on the photocatalytic degradation of TC was investigated. The optimal pyrolysis temperature was found to be 400 ℃. The photodegradation rate reached 86% in 60 min under visible-light irradiation. In addition, benefiting from the common effects of carbon, CdS, and HNTs, the photocatalyst exhibited good chemical stability. After being laid aside for one year, the photocatalytic efficiency was unaffected and the photocatalyst retained its high catalytic activity after three catalytic cycles. Based on our experimental results, the preparation mechanism and degradation of the intermediate product of TC are discussed.



Key wordsCadmium sulfide      Carbon      Halloysite nanotube      Photocatalytic degradation      Tetracycline      Reusability     
Received: 15 July 2013      Published: 21 November 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21207053), Natural Science Foundation of Jiangsu Province, China (SBK2011460), China Postdoctoral Science Foundation (2011M500861, 2012M511219, 2011M500869), and Program for Postgraduate Research Innovation in University of Jiangsu University, China (CXLX12_0634).

Corresponding Authors: HUO Peng-Wei     E-mail: huopw@mail.ujs.edu.cn
Cite this article:

XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties. Acta Phys. -Chim. Sin., 2014, 30(1): 141-149.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201311211     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I1/141

(1) Marshall, B. M.; Levy, S. B. Clin. Microbiol. Rev. October2011, 24, 718. doi: 10.1128/CMR.00002-11
(2) Baquero, F.; Martínez, J. L.; Canton, R. Curr. Opin. Biotechnol.2008, 19, 260. doi: 10.1016/j.copbio.2008.05.006
(3) Jiao, S. J.; Zheng, S. R.; Yin, D. Q.;Wang, L. H.; Chen, L. Y.Chemosphere 2008, 73, 377.
(4) Zhao, C.; Deng, H. P.; Li, Y.; Liu, Z. Z. J. Hazard. Mater. 2010,176, 884. doi: 10.1016/j.jhazmat.2009.11.119
(5) Pereira, J. H. O. S.; Vilar, V. J. P.; Borges, M. T.; González, O.;Esplugas, S.; Boaventura, R. A. R. Sol. Energy 2011, 85, 2732.doi: 10.1016/j.solener.2011.08.012
(6) Lin, X.; Yu, L. L.; Yan, L, N.; Guan, Q. F.; Yan, Y. S.; Zhao, H.Acta Phys. -Chim. Sin. 2013, 29, 1771. [林雪, 于丽丽, 闫丽娜, 关庆丰, 闫永胜, 赵晗. 物理化学学报, 2013, 29, 1771.]doi: 10.3866/PKU.WHXB201305131
(7) Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Appl. Surf. Sci.2008, 254, 7215. doi: 10.1016/j.apsusc.2008.05.268
(8) Shi, J.W.; Yan, X.; Cui, H. J.; Zong, X.; Fu, M. L.; Chen, S. H.;Wang, L. Z. J. Mol. Catal. A: Chem. 2012, 356, 53. doi: 10.1016/j.molcata.2012.01.001
(9) Barpuzary, D.; Khan, Z.; Vinothkumar, N.; De, M.; Qureshi, M.J. Phys. Chem. C 2012, 116, 150.
(10) Ryu, S. Y.; Balcerski,W.; Lee, T. K.; Hoffmann, M. R. J. Phys.Chem. C 2007, 111, 18195. doi: 10.1021/jp074860e
(11) Zhang, H.; Zhu, Y. F. J. Phys. Chem. C 2010, 114, 5822. doi: 10.1021/jp910930t
(12) Guo, Y.;Wang, H. S.; He, C. L. Langmuir 2009, 25, 4678. doi: 10.1021/la803530h
(13) Zhong, J.; Chen, F.; Zhan, J. L. J. Phys. Chem. C 2010, 114,933. doi: 10.1021/jp909835m
(14) Yang, H. P.; Zhang, Y. C.; Fu, X. F.; Song, S. S.;Wu, J. M. ActaPhys. -Chim. Sin. 2013, 29, 1327. [杨汉培, 张颖超, 傅小飞,宋双双, 吴俊明. 物理化学学报, 2013, 29, 1327.] doi: 10.3866/PKU.WHXB201303212
(15) Li, S. K.; Huang, F. Z.;Wang, Y.; Shen, Y. H.; Qiu, L. G.; Xie,A. J.; Xu, S. J. J. Mater. Chem. 2011, 21, 7459. doi: 10.1039/c0jm04569a
(16) Gao, Z. Y.; Liu, N.;Wu, D. P.; Tao,W. G.; Xu, F.; Jiang, K.Appl. Surf. Sci. 2012, 258, 2473. doi: 10.1016/j.apsusc.2011.10.075
(17) Papoulis, D.; Komarneni, S.; Nikolopoulou, A.; Tsolis-Katagas,P.; Panagiotaras, D., Kacandes, H. G.; Zhang, P.; Yin, S.; Satoe,T.; Katsuk, H. Appl. Clay Sci. 2010, 50, 118. doi: 10.1016/j.clay.2010.07.013
(18) Pan, J. M.; Yao, H.; Xu, L. C.; Ou, H. X.; Huo, P.W.; Li, X. X.;Yan, Y. S. J. Phys. Chem. C 2011, 115, 5440. doi: 10.1021/jp111120x
(19) Wang, L.; Chen, J. L.; Ge, L.; Zhu, Z. H.; Rudolph, V. EnergyFuels 2011, 25, 3408. doi: 10.1021/ef200719v
(20) Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani,R.; Rinaldi, R.; Leporatti, S. Biomacromolecules 2010, 11,820. doi: 10.1021/bm9014446
(21) Reshmi, R.; Sanjay, G.; Sugunan, S. Catal. Commun. 2006, 7,460. doi: 10.1016/j.catcom.2006.01.001
(22) Zhao, M. F.; Liu, P. Microporous Mesoporous Mat. 2008, 112,419. doi: 10.1016/j.micromeso.2007.10.018
(23) Zhang, K. J.; Liu, X. H. J. Solid State Chem. 2011, 184, 2701.doi: 10.1016/j.jssc.2011.08.011
(24) Wang, Q. Q.; Zhao, G. L.; Han, G. R. Mater. Lett. 2005, 59,2625. doi: 10.1016/j.matlet.2005.04.004
(25) Wang, R. J.; Jiang, G. H.; Ding, Y.W.;Wang, Y.; Sun, X. K.;Wang, X. H.; Chen,W. X. Appl. Mater. Interfaces 2011, 3,4154. doi: 10.1021/am201020q
(26) Bhattacharyya, S. Y.; Zitoun, D.; Gedanken, A. J. Phys. Chem.C 2008, 112, 7624. doi: 10.1021/jp801353w
(27) Bhattacharyya, S. Y.; Estrin, Y.; Rich, D. H.; Zitoun, D.;Gedanken, A. J. Phys. Chem. C 2010, 114, 22002. doi: 10.1021/jp107083f
(28) Mahendirana, C.; Maiyalaganb, T.; Scottb, K.; Gedanken, A.Mater. Chem. Phys. 2011, 128, 341. doi: 10.1016/j.matchemphys.2011.02.067
(29) Yang, H.; An, T. C.; Li, G. Y.; Song,W. H.; Cooper,W. J.; Luo,H. Y.; Guo, X. D. J. Hazard. Mater. 2010, 179, 834. doi: 10.1016/j.jhazmat.2010.03.079
(30) Wu, J.; Zhang, H.; Oturan, N.;Wang, Y.; Chen, L.; Oturan, M.A. Chemosphere 2012, 87, 614. doi: 10.1016/j.chemosphere.2012.01.036
(31) Lu, Z. Y.; Huo, P.W.; Luo, Y. Y.; Liu, X. L.;Wu, D.; Gao, X.;Li, C. X.; Yan, Y. S. J. Mol. Catal. A: Chem. 2013, 378, 91.doi: 10.1016/j.molcata.2013.06.001

[1] Xiuli LU,Yingying HAN,Tongbu LU. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1014-1028.
[2] Yujing ZHANG,Xingchao DAI,Hongli WANG,Feng SHI. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 845-857.
[3] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[4] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[5] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[6] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[7] Lin WANG,Liang XIN,Tatsuya ISHIYAMA,Qiling PENG,Shen YE,Akihiro MORITA. Microscopic Investigation of Ethylene Carbonate Interface: A Molecular Dynamics and Vibrational Spectroscopic Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1124-1135.
[8] Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123.
[9] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[10] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[11] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[12] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[13] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[14] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[15] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.