Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (1): 75-82    DOI: 10.3866/PKU.WHXB201311261
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis of Rod-Like LiFePO4/C Materials with Different Aspect Ratios by Polyol Process
HU You-Kun1, REN Jian-Xin1, WEI Qiao-Ling1,3, GUO Xiao-Dong1, TANG Yan1, ZHONG Ben-He1, LIU Heng2
1 College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;
2 College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P. R. China;
3 Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
Download:   PDF(2072KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Rod-like LiFePO4/C particles with different aspect ratios were synthesized by controlling the reflux reaction time in polyol medium at a low temperature, using an Fe3+ salt as the iron source. The precursors and final LiFePO4/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge test. The results show that the reflux reaction time has a significant effect on the characteristics of the LiFePO4 precursors and electrochemical performance of the final LiFePO4/C samples. The morphology of the precursors is transformed from irregular short rod-like particles into regular long rod-like particles, and the aspect ratios of the rods increase with increasing reflux reaction time from 4 to 16 h. At a reflux reaction time of 10 h, the material contains multifarious morphologies, which is beneficial to the electron transmission, and displays an excellent electrochemical performance at low discharge rates, the discharge capacity is 163 mAh·g-1 at 0.1C rate. Extension of the reflux reaction time to 16 h, the material reveals the biggest aspect ratio, which is conducive to the diffusion of lithium ions, and gives good electrochemical performance at high discharge rates, the discharge capacities are measured to be 135, 125, 118, 110, and 98 mAh·g-1 at 1C, 3C, 5C, 10C, and 20C rates, respectively, revealing good cycling performance and little capacity fading.



Key wordsLiFePO4      Lithium-ion battery      Polyol process      Triethylene glycol      Reflux reaction time     
Received: 11 August 2013      Published: 26 November 2013
MSC2000:  O646  
Fund:  

The project was supported by the Sichuan University Funds for Young Scientists, China (2011SCU11081) and Research Fund for the Doctoral Program of Higher Education, Ministry of Education, China (20120181120103).

Corresponding Authors: GUO Xiao-Dong     E-mail: xiaodong2009@scu.edu.cn
Cite this article:

HU You-Kun, REN Jian-Xin, WEI Qiao-Ling, GUO Xiao-Dong, TANG Yan, ZHONG Ben-He, LIU Heng. Synthesis of Rod-Like LiFePO4/C Materials with Different Aspect Ratios by Polyol Process. Acta Phys. Chim. Sin., 2014, 30(1): 75-82.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201311261     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I1/75

(1) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97, 498.
(2) Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev.2004, 104, 4243. doi: 10.1021/cr020705e
(3) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(4) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165,646. doi: 10.1016/j.jpowsour.2006.10.054
(5) Cheng, Y.;Wang, G.; Yan, M. M.; Jiang, Z. Y. J. Solid State Electrochem. 2007, 11, 310.
(6) Ferrari, S.; Lavall, R. L.; Capsoni, D.; Quartarone, E.; Magistris,A.; Mustarelli, P.; Canton, P. J. Phys. Chem. C 2010, 114,12598. doi: 10.1021/jp1025834
(7) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.
(8) Konarova, M.; Taniguchi, L. J. Power Sources 2010, 195,3661. doi: 10.1016/j.jpowsour.2009.11.147
(9) Yang, S. T.; Zhao, N. H.; Dong, H. Y.; Yang, J. X.; Hue, H. Y.Electrochim. Acta 2005, 51, 166. doi: 10.1016/j.electacta.2005.04.013
(10) Jinsub, L.; Mathew, V.; Kangkun, K.; Jieh, M.; Jaekook, K.J. Electrochem. Soc. 2011, 158, A736.
(11) Kim, D.; Lim, J.; Choi, E.; Gim, J.; Mathew, V.; Paik, Y.; Jung,H.; Lee,W.; Ahn, D.; Paek, S.; Kim, J. Surf. Rev. Lett. 2010, 17,111. doi: 10.1142/S0218625X10014053
(12) Deng, H. G.; Jin, S. L.; Zhan, L.; Qiao,W. M.; Ling, L. C.Electrochim. Acta 2012, 78, 633. doi: 10.1016/j.electacta.2012.06.059
(13) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Guo, H. J.; Zhou, S. Y.J. Power Sources 2008, 184, 574. doi: 10.1016/j.jpowsour.2008.01.016
(14) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28 (5), 1183. [曹雁冰, 段建国,姜峰, 胡国荣, 彭忠东, 杜柯. 物理化学学报, 2012, 28 (5),1183.] doi: 10.3866/PKU.WHXB201202221
(15) Franger, S.; Le, C. F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119, 252.
(16) Arnold, G.; Garche, J.; Hemmer, R.; Strobele, S.; Vogler, C.;Wohlfahrt-Mehrens, A. J. Power Sources 2003, 119, 247.
(17) Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc.2001, 148, A224.
(18) Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
(19) Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. J. Chem. Mater. 2007, 17, 45. doi: 10.1039/b613457m
(20) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347. [赵浩川,宋杨, 郭孝东, 钟本和, 董静, 刘恒. 物理化学学报,2011, 27 (10), 2347.] doi: 10.3866/PKU.WHXB20110905
(21) Murugan, A. V.; Muraliganth, T.; Manthiram, A. Electrochem. Commun. 2008, 10, 903. doi: 10.1016/j.elecom.2008.04.004
(22) Gong, H. X.; Yu, Y.; Li, T.; Mei, T.; Xing, Z.; Zhu, Y. C.; Qian,Y. T.; Shen, X. Y. Mater. Lett. 2012, 66, 374. doi: 10.1016/j.matlet.2011.08.093
(23) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G.C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 28.
(24) Sun, C.W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133, 2132. doi: 10.1021/ja1110464
(25) Wen, J. J. Study on the Lquid Phase Synthesis of Lithium IronPhosphate for Cathode Materials. MS Dissertation, SichuanUniversity, Chengdu, 2012. [文嘉杰. 液相法合成磷酸铁锂正极材料的研究[D]. 成都: 四川大学, 2012.]
(26) Wang, Y. G.;Wang, Y. R.; Hosono, E. J.;Wang, K. X.; Zhou, H.S. Angew. Chem. Int. Edit. 2008, 47, 7461. doi: 10.1002/anie.v47:39
(27) Lin, Y. B.; Lin, Y.; Zhou, T.; Zhou, T.; Zhao, G. Y.; Huang, Y.D.; Huang, Z. G. J. Power Sources 2013, 226, 20. doi: 10.1016/j.jpowsour.2012.10.074
(28) Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann,W.J. Power Sources 2011, 196, 6729. doi: 10.1016/j.jpowsour.2010.11.015
(29) Barsoukov, E.; Kim, J. H.; Yoon, C. O.; Lee, H. J. Electrochem. Soc. 1998, 145, 2711. doi: 10.1149/1.1838703

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[7] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[10] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[11] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[12] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[13] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[14] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[15] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.