Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (2): 305-310    DOI: 10.3866/PKU.WHXB201312022
Silicon Supported on Stable Si-O-C Skeleton in High-Performance Lithium-Ion Battery Anode Materials
WANG Jian-Tao, WANG Yao, HUANG Bin, YANG Juan-Yu, TAN Ao, LU Shi-Gang
R&D Center for Vehicle Battery and Energy Storage, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
Download:   PDF(3337KB) Export: BibTeX | EndNote (RIS)       Supporting Info


A Si/SiOC/graphite composite structure with high efficiency and long-term cycling stability was synthesized using a cost- effective method. In this structure, a SiOC network with good chemical stability acts as a skeleton to support and segregate Si nanostructures. The graphite incorporated in the Si/SiOC composite is used as a conductive material to enhance the electrical conductivity. Such Si/SiOC/graphite composite anodes show excellent cycling stability, with a specific capacity of ~637.3 mAh·g-1 and ~86% capacity retention over 100 cycles at a rate of 0.3C. The design of this new structure has the potential to provide a basis for the development of other functional composite materials.

Key wordsSi/SiOC/graphite      Composite material      Lithium-ion battery      Anode      Long-term cycling     
Received: 24 October 2013      Published: 02 December 2013
MSC2000:  O646  

The project was supported by the National High Technology Research and Development Program of China (863) (2011AA11A256, 2013AA050903, 2013AA050906).

Corresponding Authors: LU Shi-Gang     E-mail:
Cite this article:

WANG Jian-Tao, WANG Yao, HUANG Bin, YANG Juan-Yu, TAN Ao, LU Shi-Gang. Silicon Supported on Stable Si-O-C Skeleton in High-Performance Lithium-Ion Battery Anode Materials. Acta Phys. Chim. Sin., 2014, 30(2): 305-310.

URL:     OR

(1) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(2) Maier, J. Nat. Mater. 2005, 4, 805. doi: 10.1038/nmat1513
(3) Kang, B.; Ceder, G. Nature 2009, 458, 190. doi: 10.1038/nature07853
(4) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.;Schalkwijk,W. V. Nat. Mater. 2005, 4, 366. doi: 10.1038/nmat1368
(5) Wu, H. B.; Zhang, Y.; Yuan, C. L.;Wei, X. P.; Yin, J. L.;Wang,G. L.; Cao, D. X.; Zhang, Y. M.; Yang, B. F.; She, P. L. Acta Phys. -Chim. Sin. 2013, 29, 1247. [武洪彬, 张莹, 袁聪俐,韦小培, 殷金玲, 王贵领, 曹殿学, 张益明, 杨宝峰, 佘佩亮.物理化学学报, 2013, 29, 1247.] doi: 10.3866/PKU.WHXB201303211
(6) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29,293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29,293.] doi: 10.3866/PKU.WHXB201211142
(7) Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.;Huggins, R. A.; Cui, Y. Nature Nanotech. 2008, 3, 31. doi: 10.1038/nnano.2007.411
(8) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M.Nature 2000, 407, 496. doi: 10.1038/35035045
(9) Taberna, L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567. doi: 10.1038/nmat1672
(10) Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.;Aymard, L. Nat. Mater. 2008, 7 , 916. doi: 10.1038/nmat2288
(11) Jiang, D. D.; Fu, Y. B.; Ma, X. H. Acta Phys. -Chim. Sin. 2009,25, 1481. [姜冬冬, 付延鲍, 马晓华. 物理化学学报, 2009,25, 1481.] doi: 10.3866/PKU.WHXB20090817
(12) Fan, X. Y.; Zhuang, Q. C.;Wei, G. Z.; Ke, F. S.; Huang, L.;Dong, Q. F.; Sun, S. G. Acta Phys. -Chim. Sin. 2009, 25, 611.[樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚. 物理化学学报, 2009, 25, 611.] doi: 10.3866/PKU.WHXB20090403
(13) Li, Y.; Xie, H. Q.; Tu, J. P. Acta Phys. -Chim. Sin. 2009, 25, 365.[黎阳, 谢华清, 涂江平. 物理化学学报, 2009, 25, 365.] doi: 10.3866/PKU.WHXB20090229
(14) Kasavajjula, U.;Wang, C.; Appleby, A. J. J. Power Sources2007, 163, 1003. doi: 10.1016/j.jpowsour.2006.09.084
(15) Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Müller, J. O.;Schlögl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Edit.2008, 47, doi: 1645. doi: 10.1002/anie.200704287
(16) Ng, S. H.;Wang, J.;Wexler, D.; Konstantinov, K.; Guo, Z. P.;Liu, H. K. Angew. Chem. Int. Edit. 2006, 45, 6896. doi: 10.1002/anie.200601676
(17) Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48,1579. doi: 10.1016/S0013-4686(03)00030-6
(18) Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Chem. Commun. 2010, 46, 2025. doi: 10.1039/b919738a
(19) Zhou, X.; Yin, Y. X.;Wan, L. J.; Guo, Y. G. Chem. Commun.2012, 48, 2198. doi: 10.1039/c2cc17061b
(20) Xiang, H.; Zhang, K.; Ji, G.; Lee, J. Y.; Zou, C.; Chen, X.;Wu,J. Carbon 2011, 49, 1787. doi: 10.1016/j.carbon.2011.01.002
(21) Liu, Y.; Matsumura, T.; Imanishi, N.; Hirano, A.; Ichikawa, T.;Takeda, Y. Electrochem. Solid-State Lett. 2005, 8, A599.doi: 10.1149/1.2039954
(22) Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; Van Aken, P. A.; Maier,J. Adv. Mater. 2010, 22, 2247. doi: 10.1002/adma.200903755
(23) Hiroshi, F.; Hisashi, O.; Takakazu, H.; Kiyoshi, K. ACS App. Mater. Inter. 2010, 2, 998. doi: 10.1021/am100030f
(24) Hiroshi, F.; Hisashi, O.; Takakazu, H.; Kiyoshi, K. J. Electro. Society 2011, 158, A550. doi: 10.1149/1.3567956
(25) Hiroshi, F.; Hisashi, O.; Takakazu, H.; Kiyoshi, K. J. Power Sources 2011, 196, 371. doi: 10.1016/j.jpowsour.2010.06.077

[1] ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2018, 34(2): 219-226.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[8] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[9] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[10] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[11] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[13] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2339-2358.
[14] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[15] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2127-2132.