Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (2): 241-250    DOI: 10.3866/PKU.WHXB201312042
Theoretical Investigation of Interaction of Benzene Molecule and Si6O18H12 and Al6O24H30 Cluster Models
WANG Xing1, QIAN Ping1, SONG Kai-Hui1, ZHANG Chao1, SONG Wei2
1 Chemistry and Material Science Faculty, Shandong Agricultural University, Tai'an 271018, Shandong Province, P. R. China;
2 Centers for Disease Control and Prevention, Tai'an 271000, Shandong Province, P. R. China
Download:   PDF(2318KB) Export: BibTeX | EndNote (RIS)      


Clay minerals are used to remove organics and to remediate soils and groundwater contaminated with petroleum hydrocarbons. Cluster models of Si6O18H12 and Al6O24H30 for the tetrahedral (Si―O) and octahedral (Al―O) surfaces of kaolinite were set up to mimic kaolinite surfaces. The interactions of benzene molecule and the kaolinite cluster models were systematically studied at the MP2/6- 31G(d,p)//B3LYP/6-31G(d,p) level. The gas- state adsorption properties of benzene on the kaolinite surfaces, such as the optimized structures, structural parameters, adsorption energies, natural bond orbital charge distributions, vibration frequencies, electrostatic potential maps, electron density characteristics (the ρ and ▽2ρ values of secondary hydrogen-bonds), and electron density difference, were analyzed in this work. The optimized structures indicate that the adsorption of benzene molecule on the kaolinite surfaces may be caused by formation of secondary hydrogen-bonds. The results for the other properties further confirmed the existence of secondary hydrogen-bonds. Benzene molecule is more likely to be adsorbed on the Al―O surface than on the Si―O surface. The adsorption angle between the benzene ring plane and the kaolinite Al―O surface is about 90°.

Key wordsDensity functional theory      Benzene      Kaolinite      Adsorption      Secondary hydrogen bond     
Received: 29 July 2013      Published: 04 December 2013
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (20903063) and Postdoctoral Foundation of Shandong Agricultural University, China (76335).

Corresponding Authors: QIAN Ping     E-mail:
Cite this article:

WANG Xing, QIAN Ping, SONG Kai-Hui, ZHANG Chao, SONG Wei. Theoretical Investigation of Interaction of Benzene Molecule and Si6O18H12 and Al6O24H30 Cluster Models. Acta Phys. Chim. Sin., 2014, 30(2): 241-250.

URL:     OR

(1) Roldan, R.; Romero, F. J.; Jimenez, C.; Borau, V.; Marinas, J.M. Appl. Catal. A 2004, 266, 203. doi: 10.1016/j.apcata.2004.02.008
(2) Maliyekkal, S. M.; Rene, E. R.; Philip, L.; Swaminathan, T.J. Hazard. Mater. 2004, 109, 201. doi: 10.1016/j.jhazmat.2004.04.001
(3) Pilidis, G. A.; Karakitsios, S. P.; Kassomenos, P. A.; Kazos, E.A.; Stalikas, C. D. Environ. Monit. Assess. 2009, 150, 285. doi: 10.1007/s10661-008-0230-9
(4) Lesage, S. Anal. Chem. ACS Publications 1993, 65, 647A.
(5) Michalková, A.; Tunega, D.; Nagy, L. T. J. Mol. Struct. - Theochem 2002, 581, 37. doi: 10.1016/S0166-1280(01)00741-2
(6) Hess, A. C.; Saunders, V. R. J. Phys. Chem. 1992, 96, 4367. doi: 10.1021/j100190a047
(7) Shua, H. T.; Lib, D.; Scalaa, A. A.; Mab, Y. H. Purif. Technol.1997, 11, 27. doi: 10.1016/S1383-5866(96)01005-2
(8) Beltrán, A.; Andrés, J.; Calatayud, M.; Martins, J. B. L. Chem. Phys. Lett. 2001, 338, 224. doi: 10.1016/S0009-2614(01)00238-X
(9) Martins, J. B. L.; Sambrano, J. R.; Vasconcellos, L. A. S.;Longo, E.; Taft, C. A. Quim. Nova. 2004, 27, 10. doi: 10.1590/S0100-40422004000100003
(10) Martins, J.; Taft, C.; Lie, S.; Longo, E. J. Mol. Struct. - Theochem 2000, 528, 161. doi: 10.1016/S0166-1280(99)00498-4
(11) Almeida, A.; Martins, J.; Longo, E.; Taft, C.; Murgich, J.;Jalbout, A. F. J. Mol. Struct. -Theochem 2003, 664, 111.
(12) Sambrano, J.; Vasconcellos, L.; Martins, J.; Santos, M.; Longo,E.; Beltran, A. J. Mol. Struct. -Theochem 2003, 629, 307. doi: 10.1016/S0166-1280(03)00200-8
(13) Castro, E. A. S.; Gargano, R.; Martins, J. B. L. Int. J. Quantum Chem. 2012, 112, 2828. doi: 10.1002/qua.v112.16
(14) Castro, E. A. S.; Martins, J. B. L. J. Comput. Aided Mater. Des.2005, 12, 121.
(15) Bickmore, B. R.; Rosso, K. M.; Nagy, K. L.; Cygan, R. T.;Tadanier, C. J. Clays Clay Min. 2003, 51, 359.
(16) Castro, E. A. S.; Martins, J. B. L. Int. J. Quantum Chem. 2005,103, 550.
(17) Balan, E.; Saitta, A. M.; Mauri, F.; Lemaire, C.; Guyot, F. Am. Mineral. 2002, 87, 1286.
(18) Michalková, A.; Szymczak, J. J.; Leszczynski, J. Struct. Chem.2005, 16, 325. doi: 10.1007/s11224-005-4463-8
(19) Pelmenschikov, A.; Leszczynski, J. J. Phys. Chem. B 1999, 103,6886. doi: 10.1021/jp990091q
(20) Gorb, L.; Lutchyn, R.; Zub, Y.; Leszczynska, D.; Leszczynski, J.J. Mol. Struct. -Theochem 2006, 766, 151. doi: 10.1016/j.theochem.2006.04.013
(21) Lee, J. F.; Mortland, M. M.; Chiou, C. T.; Kile, D. E.; Boyd, S.A. Clay Clay Min. 1990, 38, 113.
(22) Wilson, M. A.; Lee, G. S. H.; Taylor, R. C. Clay Clay Min.2002, 50, 348.
(23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(24) Young, R. A.; Hewat, A.W. Clay Clay Min. 1988, 36, 225.
(25) Bish, D. L. Clay Clay Min. 1993, 41, 738.
(26) Karl, K. I.; Russell, D. J.; Raghu, N. K. J. Phys. Chem. A 2005,109, 8430. doi: 10.1021/jp052793n
(27) Koch, U.; Popelier, P. J. Phys. Chem. 1995, 99, 9747. doi: 10.1021/j100024a016
(28) Popelier, P. J. Phys. Chem. A 1998, 102, 1873. doi: 10.1021/jp9805048
(29) Bader, R.W. F. Accounts Chem. Res. 1985, 18, 9.
(30) Flükiger, P.; Lüthi, H.; Portmann, S.;Weber, J. Molekel 4.0;Swiss Center for Scientific Computing: Manno, Switzerlan,2000.
(31) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
(32) Lu, T. GsGrid: Extracting Data from Gaussian Grid File andGrid File Calculation [EB/OL]. http:∥, in.
(33) Zhang, C.; Song, K. H.;Wang, X.; Yin, H. Z.; Qian, P. J. Mol. Sci. 2013, 29, 134. [张超, 宋开慧, 王幸, 尹洪宗,钱萍. 分子科学学报, 2013, 29, 134.]
(34) Hu, X. L.; Michaelides, A. Surf. Sci. 2008, 602, 960. doi: 10.1016/j.susc.2007.12.032
(35) Neder, R.; Burghammer, M.; Grasl, T.; Schulz, H.; Bram, A.;Fiedler, S. Clay Clay Min. 1999, 47, 487.
(36) Austen, K. F.; White, T. O. H.; Marmier, A.; Parker, S. C.;Artacho, E.; Dove, M. T. J. Phys: Condes. Matter 2008, 20,035215. doi: 10.1088/0953-8984/20/03/035215
(37) Sainz-Díaz, I.; Francisco-Márquez, M.; Vivier-Bunge, A.Environ. Chem. 2011, 8, 429.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[9] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[12] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[13] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[14] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Phys. Chim. Sin., 2017, 33(5): 918-926.
[15] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.