Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (2): 297-304    DOI: 10.3866/PKU.WHXB201312233
Influence of Graphene with Different Oxidation Degrees on Nickel Hydroxide Pseudocapacitor Characterization
HE Yuan-Yuan, ZHANG Jin-Jiang, ZHAO Jian-Wei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, P. R. China
Download:   PDF(1497KB) Export: BibTeX | EndNote (RIS)      


We designed a series of models of reduced graphene oxide sheets (rGNOs) with different oxidation degrees and then studied the interactions between oxidation defects on rGNOs and nickel hydroxide (Ni(OH)2) using density functional theory (DFT). The adsorption energy between the oxygen-containing groups on rGNOs and Ni(OH)2 is dependent on the oxidation degree of rGNOs. The variations of atomic distances and charge distribution of the oxide-defected graphene after absorbing Ni(OH)2 suggested that the oxygen-containing groups on rGNOs improve the characteristics of Ni(OH)2 as a pseudocapacitor. These theoretical results agree well with available experimental observations and give an explanation for some experimental results. We also introduce a simple potentiostatic electrodeposition method, with which Ni(OH)2 nanoparticles about 5 nm in diameter were effectively dispersed on the substrate via induction of oxidation defects on rGNOs. In the fabrication of Ni(OH)2/rGNOs, electrochemical reduction of graphene oxide is the key process. The stronger adsorption results in Ni(OH)2/rGNOs have higher rate pseudocapacitance (1591 F·g-1 at 5 mV·s-1) compared with that of Ni(OH)2 on bare nickel (656 F·g-1 at 5 mV·s-1). The variations of the geometries and charge distributions of the rGNOs after absorbing Ni(OH)2 lead to the lower equivalent series resistance and better frequency response of Ni(OH)2/rGNOs than Ni(OH)2/Ni. The high capacitance of Ni(OH)2/rGNOs indicates that Ni(OH)2/rGNOs have the potential of being used as the electrode material of pseudocapacitors.

Key wordsNickel hydroxide      Oxidation defect      Atomic distance      Charge distribution      Adsorption energy      Pseudocapacitance     
Received: 21 October 2013      Published: 23 December 2013
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51071084, 21273113, 21121091, 11204120) and National Key Technology R&DProgramof China (2012BAF03B05).

Corresponding Authors: ZHAO Jian-Wei     E-mail:
Cite this article:

HE Yuan-Yuan, ZHANG Jin-Jiang, ZHAO Jian-Wei. Influence of Graphene with Different Oxidation Degrees on Nickel Hydroxide Pseudocapacitor Characterization. Acta Phys. Chim. Sin., 2014, 30(2): 297-304.

URL:     OR

(1) Levi, E.; Gofer, Y.; Aurbach, D. Chem. Mater. 2010, 22, 860.doi: 10.1021/cm9016497
(2) Yuan, Y. F.; Xia, X. H.;Wu, J. B.; Yang, J. L.; Chen, Y. B.; Guo,S. Y. Electrochim. Acta 2011, 56, 2627. doi: 10.1016/j.electacta.2010.12.001
(3) Pang, S. C.; Anderson, M. A.; Chapman, T.W. J. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216
(4) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; VanSchalkwijk,W. Nature Materials 2005, 4, 366. doi: 10.1038/nmat1368
(5) Choi, B. G.; Yang, M.; Jung, S. C.; Lee, K. G.; Kim, J. G.; Park,H.; Park, T. J.; Lee, S. B.; Han, Y. K.; Huh, Y. S. ACS Nano2013, 7, 2453. doi: 10.1021/nn305750s
(6) Yang, X. F.;Wang, G. C.;Wang, R. Y.; Li, X.W. Electrochim. Acta 2010, 55, 5414. doi: 10.1016/j.electacta.2010.04.067
(7) Pico, F.; Morales, E.; Fernandez, J. A.; Centeno, T. A.; Ibañez,J.; Rojas, R. M.; Amarilla, J. M.; Rojo, J. M. Electrochim. Acta2009, 54, 2239. doi: 10.1016/j.electacta.2008.10.028
(8) Zhao, D. D.; Bao, S. J.; Zhou,W. J.; Li, H. L. Electrochem. Commun. 2007, 9, 869. doi: 10.1016/j.elecom.2006.11.030
(9) Zhang, L. L.; Xiong, Z. G.; Zhao, X. S. J. Power Sources 2013,222, 326. doi: 10.1016/j.jpowsour.2012.09.016
(10) Yang, G.W.; Xu, C. L.; Li, H. L. Chem. Commun. 2008, 6537.
(11) Yang, D. N.;Wang, R. M.; He, M. S.; Zhang, J.; Liu, Z. F.J. Phys. Chem. B 2005, 109, 7654. doi: 10.1021/jp050083b
(12) Xu, L. P.; Ding, Y. S.; Chen, C. H.; Zhao, L. L.; Rimkus, C.Chem. Mater. 2008, 20, 308. doi: 10.1021/cm702207w
(13) Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. J. Phys. Chem. B2005, 109, 1125. doi: 10.1021/jp046797o
(14) Chen, X.; Chen, X. H.; Zhang, F. Q.; Yang, Z.; Huang, S. M.J. Power Sources 2013, 243, 555. doi: 10.1016/j.jpowsour.2013.04.076
(15) Zhao, D. D.; Xu, M.W.; Zhou,W. J.; Zhang, J.; Li, H. L.Electrochim. Acta 2008, 53, 2699. doi: 10.1016/j.electacta.2007.07.053
(16) Kottegoda, I. R. M.; Idris, N. H.; Lu, L.;Wang, J. Z.; Liu, H. K.Electrochim. Acta 2011, 56, 5815. doi: 10.1016/j.electacta.2011.03.143
(17) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. -Chim. Sin. 2012, 28, 2754. [李松梅, 王博, 刘建华,于美, 安军伟. 物理化学学报, 2012, 28, 2754.] doi: 10.3866/PKU.WHXB201208292
(18) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j
(19) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. doi: 10.1016/S0008-6223(00)00183-4
(20) Xu, H. B.; Fan, X. Z.; Lu, Y. H.; Zhong, L. A.; Kong, X. F.;Wang, J. Carbon 2010, 48, 3300. doi: 10.1016/j.carbon.2010.04.051
(21) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Kong, X. F.;Wang, J. J. Mater. Chem. 2011, 21, 18753. doi: 10.1039/c1jm13214h
(22) Sun, Z. P.; Lu, X. M. Ind. Eng. Chem. Res. 2012, 51, 9973. doi: 10.1021/ie202706h
(23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(24) Zhao, J.W.; Liu, H. M.; Ni,W. B.; Guo, Y.; Yin, X. Acta Phys. -Chim. Sin. 2009, 25, 1472. [赵健伟, 刘洪梅, 倪文彬,郭彦, 尹星. 物理化学学报, 2009, 25, 1472.] doi: 10.3866/PKU.WHXB20090744
(25) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(26) Ramesha, G. K.; Sampath, S. J. Phys. Chem. C 2009, 113,7985. doi: 10.1021/jp811377n
(27) Guo, H. L.;Wang, X. F.; Qian, Q. Y.;Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d
(28) Gao, F.; Qi, X.W.; Cai, X. L.;Wang, Q. X.; Gao, F.; Sun,W.Thin Solid Films 2012, 520, 5064. doi: 10.1016/j.tsf.2012.03.002
(29) Zhao, C. M.;Wang, X.;Wang, S. M.;Wang, Y. Y.; Zhao, Y. X.;Zheng,W. T. Int. J. Hydrog. Energy 2012, 37, 11846. doi: 10.1016/j.ijhydene.2012.05.138
(30) Wang, D. H.; Choi, D.W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou,R.; Hu, D. H.;Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I.A.; Liu, J. ACS Nano 2009, 3, 907. doi: 10.1021/nn900150y
(31) Corrigan, D. A.; Bendert, R. M. J. Electrochem. Soc. 1989, 136,723. doi: 10.1149/1.2096717
(32) Kim, S. J.; Park, G. J.; Kim, B. C.; Chung, J. K.;Wallace, G. G.;Park, S. Y. Synthetic Metals 2012, 161, 2641.
(33) Gomez, J.; Kalu, E. E. J. Power Sources 2013, 230, 218. doi: 10.1016/j.jpowsour.2012.12.069
(34) Zhang,W. K.;Wang, L.; Huang, H.; Gan, Y. P.;Wang, C. T.;Tao, X. Y. Electrochim. Acta 2009, 54, 4760. doi: 10.1016/j.electacta.2009.04.008
(35) Buglione, L.; Chng, E. L. K.; Ambrosi, A.; Sofer, Z.; Pumera,M. Electrochem. Commun. 2012, 14, 5. doi: 10.1016/j.elecom.2011.09.013
(36) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z.Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29,1681.] doi: 10.3866/PKU.WHXB201305223
(37) Zhang, J. T.; Jiang, J.W.; Zhao, X. S. J. Phys. Chem. C 2011,115, 6448. doi: 10.1021/jp200724h
(38) Jagadale, A. D.; Kumbhar, V. S.; Dhawale, D. S.; Lokhande, C.D. Electrochim. Acta 2013, 98, 32. doi: 10.1016/j.electacta.2013.02.094
(39) Grden, M.; Alsabet, M.; Jerkiewicz, G. ACS Appl. Mater. Interfaces 2012, 4, 3012. doi: 10.1021/am300380m
(40) Taberna, P. L.; Simon, P.; Fauvarque, J. F. J. Electrochem. Soc.2003, 150, A292.
(41) Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. J. Power Sources2006, 158, 765. doi: 10.1016/j.jpowsour.2005.09.008

[1] LIU Zhi-Hong, FAN Cheng-Cheng, ZHANG Tian-Tian, JI Xian-Jing, CHEN Sheng-Hui, SUN Shuang-Qing, HU Song-Qing. Density Functional Theory Study of the Interaction between Sodium Dodecylbenzenesulfonate and Mineral Cations[J]. Acta Phys. Chim. Sin., 2016, 32(2): 445-452.
[2] WU Yu, LUO Jian. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2745-2752.
[3] WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1365-1373.
[4] MI Chuan-Tong, LIU Guo-Ping, WANG Jia-Jia, GUO Xin-Li, WU San-Xie, YU Jin. First-Principles Calculations of the Adsorption of Au, Ag and Cu Atoms on Defected Graphene[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1230-1238.
[5] LIU Hong-Yan, FANG Chun-Hui, FANG Yan, ZHOU Yong-Quan, ZHU Fa-Yan, GE Hai-Wen, YANG Zi-Xiang, TANG Yu-Ling. EXAFS Study of the Structure of Amorphous Nickel Borate[J]. Acta Phys. Chim. Sin., 2014, 30(11): 1979-1986.
[6] XU Wen-Jie, HU Zi-Yu, SHAO Xiao-Hong. Density Functional Theory Study on Li-Decorated B12N12 Cage for Hydrogen Storage Behavior[J]. Acta Phys. Chim. Sin., 2012, 28(07): 1721-1725.
[7] HAN Bing, CHU Yue-Ying, ZHENG An-Min, DENG Feng. Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores[J]. Acta Phys. Chim. Sin., 2012, 28(02): 315-323.
[8] XUE Rong, YAN Jing-Wang, TIAN Ying, YI Bao-Lian. Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors[J]. Acta Phys. Chim. Sin., 2011, 27(10): 2340-2346.
[9] YAO Shu-Juan, SHAO Xin, CUI Shou-Xin, ZHAO Jian-Wei, ZHOU Cheng-Gang. Adsorption and Migration of Pt Atoms on γ-Al2O3(001) Surface[J]. Acta Phys. Chim. Sin., 2011, 27(08): 1816-1822.
[10] KONG De-Shuai, WANG Jian-Ming, PI Ou-Yang, SHAO Hai-Bo, ZHANG Jian-Qing. Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode[J]. Acta Phys. Chim. Sin., 2011, 27(04): 764-768.
[11] NING Hua, TAO Xiang-Ming, WANG Mang-Mang, CAI Jian-Qiu, TAN Ming-Qiu. Density Functional Theory Study on Hydrogen Adsorption on Be(0001) Surface[J]. Acta Phys. Chim. Sin., 2010, 26(08): 2267-2273.
[12] ZHANG Jun, YU Wei-Zhao, YAN You-Guo, YU Li-Jun, REN Zhen-Jia. Molecular Dynamics Simulation of the Adsorption Behavior of Imidazoline Corrosion Inhibitors on a Fe(001) Surface[J]. Acta Phys. Chim. Sin., 2010, 26(05): 1385-1390.
[13] ZHAO Xin-Xin, TAO Xiang-Ming, MI Yi-Ming, CHEN Shu, TAN Ming-Qiu. Geometric Structures and Electronic States of Ni(110)-p2mg(2×1)-CO Surface[J]. Acta Phys. Chim. Sin., 2009, 25(11): 2305-2311.
[14] LIU Yi-Liang, YANG Bin-Wei, JIANG Gang. Electronic Effects of Atomic Nitrogen on Carbon on the Ni(111) Surface[J]. Acta Phys. Chim. Sin., 2009, 25(03): 435-440.
[15] ZHAO Xin-Xin, TAO Xiang-Ming, MI Yi-Ming, TAN Ming-Qiu. Total Energy Calculations on the Geometry Structure of Pt/Cu(001)-p(2×2)-O Surface[J]. Acta Phys. Chim. Sin., 2009, 25(03): 567-574.