Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (2): 251-256    DOI: 10.3866/PKU.WHXB201312243
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
CH4, CO2 and H2OAdsorption on Nonmetallic Atom-Decorated Graphene Surfaces
LIU Xiao-Qiang1, TIAN Zhi-Yue1, CHU Wei2, XUE Ying1
1 Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China;
2 College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
Download:   PDF(2602KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

As an unconventional gas, coalbed methane (CBM) is a desirable alternative energy source to conventional fossil fuels such as coal, oil, and natural gas. In this work, non-metallic atom X (X=H, O, N, S, P, Si, F, or Cl)- decorated Gr (graphene) (X-Gr) was used to represent the surface models of coal with structural heterogeneity. Using density functional theory, the adsorption of the CBM component Y (Y=CH4, CO2, H2O) on X-Gr was systematically investigated. The results indicate that CH4, CO2, and H2O are weakly bound to X-Gr, and the interactions between the adsorbate and the surface can be described as physisorption, which was identified through the density of states and electronic density difference analysis. Furthermore, CH4 has very large adsorption energies to H- and Cl-decorated graphene. The dopants X, such as N, O, F, and Cl, are very good adsorbents for CO2 and the influence of the dopants N and Cl cannot be ignored for the adsorption of H2O. In general, the adsorption energies of H2O on X-Gr are larger than those of CO2, while CH4 has the lowest adsorption energies, namely, the order of adsorption is H2O> CO2>CH4. Consequently, the injection of H2O or CO2 into methane-rich coal seams strongly enhances the CBM recovery efficiency via competitive adsorption with CH4 on the coal surface. The results provide a molecular-level insight into the interactions between CBM and X-Gr, and might offer useful information for recovery and purification of coalbed methane.



Key wordsDensity functional theory      Coalbed methane      Nonmetallic atom-doped graphene      Adsorption     
Received: 04 November 2013      Published: 24 December 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2011CB201202) and National Natural Science Foundation of China (21173151).

Corresponding Authors: XUE Ying     E-mail: yxue@scu.edu.cn
Cite this article:

LIU Xiao-Qiang, TIAN Zhi-Yue, CHU Wei, XUE Ying. CH4, CO2 and H2OAdsorption on Nonmetallic Atom-Decorated Graphene Surfaces. Acta Phys. Chim. Sin., 2014, 30(2): 251-256.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201312243     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I2/251

(1) Boyer, C. M.; Bai, Q. Z. Int. J. Coal. Geol. 1998, 35, 349. doi: 10.1016/S0166-5162(97)00041-4
(2) Liang, B.; Sun,W.; Qi, Q.; Li, H. Int. J. Min. Sci. Technol. 2012,22, 891. doi: 10.1016/j.ijmst.2012.12.006
(3) Chen, G.; Yang, J.; Liu, Z. Energy Fuels 2012, 26, 4583. doi: 10.1021/ef3001168
(4) Xie, H.; Zhao, X.; Liu, J.; Zhang, R.; Xue, D. Int. J. Min. Sci. Technol. 2012, 22, 749. doi: 10.1016/j.ijmst.2012.12.010
(5) Jiang,W. P. China Coalbed Methane 2009, 6, 19. [降文萍. 中国煤层气, 2009, 6, 19.]
(6) Liu, Y. Y.;Wilcox, J. Environ. Sci. Technol. 2011, 45, 809. doi: 10.1021/es102700c
(7) Kowalczyk, P.; Gauden, P. A.; Terzyk, A. P.; Furmaniak, S.;Harris, P. J. F. J. Phys. Chem. C 2012, 116, 13640. doi: 10.1021/jp302776z
(8) Jiang, Q.; Chu,W.; Sun,W. J.; Liu, F. S.; Xue, Y. Acta Phys. -Chim. Sin. 2012, 28, 1101. [蒋倩, 储伟, 孙文晶,刘凤嗣, 薛英. 物理化学学报, 2012, 28, 1101.] doi: 10.3866/PKU.WHXB201203054
(9) Li, S.; Tang, D.; Xu, H.; Yang, Z.; Guo, L. Energy Fuels 2012,26, 5005. doi: 10.1021/ef300432m
(10) Mathews, J. P.; Chaffee, A. L. Fuel 2012, 96, 1. doi: 10.1016/j.fuel.2011.11.025
(11) Vejahati, F.; Xu, Z.; Gupta, R. Fuel 2010, 89, 904. doi: 10.1016/j.fuel.2009.06.013
(12) Zhao, J.; Buldum, A.; Han, J.; Lu, J. P. Nanotechnology 2002,13, 195. doi: 10.1088/0957-4484/13/2/312
(13) Liu, Y.;Wilcox, J. Environ. Sci. Technol. 2012, 47, 95.
(14) Qiu, N. X.; Xue, Y.; Guo, Y.; Sun,W. J.; Chu,W. Comp. Theor. Chem. 2012, 992, 37. doi: 10.1016/j.comptc.2012.04.024
(15) Mo, J. J.; Xue, Y.; Liu, X. Q.; Qiu, N. X.; Chu,W.; Xie, H. P.Surf. Sci. 2013, 616, 85. doi: 10.1016/j.susc.2013.05.009
(16) Liu, X. Q.; Xue, Y.; Tian, Z. Y.; Mo, J. J.; Qiu, N. X.; Chu,W.Xie, H. P. App. Surf. Sci. 2013, 285P, 190.
(17) Qu, S.; Yang, J.; Liu, Z. Energy Fuels 2012, 26, 3928. doi: 10.1021/ef300123s
(18) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.;Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condes. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301
(19) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566. doi: 10.1103/PhysRevLett.45.566
(20) Vanderbilt, D. Phys. Rev. B: Condes. Matter 1990, 41,7892. doi: 10.1103/PhysRevB.41.7892
(21) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(22) Fujimoto, Y.; Saito, S. Phys. Rev. B 2011, 84, 245446.
(23) Nakada, K.; Ishii, A. Solid State Commun. 2011, 151, 13. doi: 10.1016/j.ssc.2010.10.036
(24) Rubea, M.; Kysilka, J.; Nachtigall, P.; Bludsky, O. Phys. Chem. Chem. Phys. 2010, 12, 6438. doi: 10.1039/c001155j
(25) Vidali, G.; Ihm, G.; Kim, H. Y.; Cole, M.W. Surf. Sci. Rep.1991, 12, 135. doi: 10.1016/0167-5729(91)90012-M
(26) Mohammad, S. A.; Gasem, K. A. M. Energy Fuels 2012, 26,557. doi: 10.1021/ef201422e
(27) Firouzi, M.;Wilcox, J. Microporous Mesoporous Mat. 2012,158, 195. doi: 10.1016/j.micromeso.2012.02.045
(28) Hu, H.; Li, X.; Fang, Z.;Wei, N.; Li, Q. Energy 2010, 35,2939. doi: 10.1016/j.energy.2010.03.028

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[9] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[12] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[13] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[14] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[15] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.