Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 467-475    DOI: 10.3866/PKU.WHXB201312252
ELECTROCHEMISTRY AND NEW ENERGY     
Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)
CHEN Lai1, CHEN Shi1,2, HU Dao-Zhong3, SU Yue-Feng1,2, LI Wei-Kang1, WANG Zhao1, BAO Li-Ying1,2, WU Feng1,2
1 Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, P. R. China;
2 National Development Center of Hi-Tech Green Materials, Beijing 100081, P. R. China;
3 China North Vehicle Research Institute, Beijing 100072, P. R. China
Download:   PDF(3211KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of lithium-rich cathode materials, xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8), were successfully synthesized by a sol-gel method. X-ray diffraction, scanning electron microscopy, and electrochemical tests were used to investigate the crystal structure, morphology, and electrochemical performance of the as-synthesized materials, respectively. The results showed that the materials with higher Li2MnO3 content had higher initial discharge capacity but poorer cycle stability, while the materials with lower Li2MnO3 content showed lower discharge capacity but better cycle stability, and the spinel impurity phase was also found. Based on the data, the optimal electrochemical properties were obtained when x=0.5 in xLi2MnO3·(1-x)LiNi0.5Mn0.5O2. Moreover, the electrochemical properties were also worthy of attention when x=0.4, 0.6.



Key wordsLithium-ion battery      Cathode      Li2MnO3      Crystal structure      Electrochemical performance     
Received: 24 October 2013      Published: 25 December 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2009CB220100), National Natural Science Foundation of China (51102018, 21103011), National High Technology Research and Development Program of China (863) (2011AA11A235, SQ2010AA1123116001) and Beijing Institute of Technology Scientific and Technological Innovation Project, China (2013CX01003).

Corresponding Authors: SU Yue-Feng     E-mail: suyuefeng@bit.edu.cn
Cite this article:

CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8). Acta Phys. Chim. Sin., 2014, 30(3): 467-475.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201312252     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I3/467

(1) Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Edit. 2012, 51 (40), 9994. doi: 10.1002/anie.201201429
(2) Li, H.;Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21 (45), 4593. doi: 10.1002/adma.v21:45
(3) Jeong, G. J.; Kim, Y. U.; Kim, H. S.; Kim, Y. J.; Sohn, H. J. Energ Environ. Sci. 2011, 4 (6), 1986. doi: 10.1039/c0ee00831a
(4) He, P.; Yu, H. J.; De, L.; Zhou, H. S. J. Mater. Chem. 2012, 22 (9), 3680. doi: 10.1039/c2jm14305d
(5) Whittingham, M. S. Chem. Soc. Rev. 2004, 104 (10), 4271.
(6) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk,W. V. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368
(7) Nagaura, T.; Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209.
(8) Song, H. K.; Lee, K. T.; Kim, M. G.; Nazar, L. F.; Cho, J. Adv. Funct. Mater. 2010, 20 (22), 3818. doi: 10.1002/adfm.201000231
(9) Armand, M.; Tarascon, J. M. Nature 2008, 451 (7179), 652. doi: 10.1038/451652a
(10) Goodenough, J. B.; Kim, Y. J. Power Sources 2011, 196 (16), 6688. doi: 10.1016/j.jpowsour.2010.11.074
(11) Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang,W.; Zhang, L. J.; An, R.; Chen, S. Adv. Mater. 2013, 25 (27), 3722. doi: 10.1002/adma.v25.27
(12) Du, K.; Hu, G. R. Chin. Sci. Bull. 2012, 57 (10), 794. [杜柯, 胡国荣. 科学通报, 2012, 57 (10), 794.] doi: 10.1360/972011-610
(13) Ritchie, A. G. J. Power Sources 2001, 96 (1), 1. doi: 10.1016/S0378-7753(00)00673-X
(14) Fergus, J.W. J. Power Sources 2010, 195 (4), 939. doi: 10.1016/j.jpowsour.2009.08.089
(15) Wu, F.; Li, N.; Su, Y.; F.; Lu, H. Q.; Zhang, L. J.; An, R.;Wang, Z.; Bao, L.Y.; Chen, S. J. Mater. Chem. 2012, 22 (4), 1489. doi: 10.1039/c1jm14459f
(16) Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid St. 2001, 4 (11), A191.
(17) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. J. Electrochem. Soc. 2002, 149 (6), A778.
(18) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J, T.; Benedek, R. B.; Hackney, S. A. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/b702425h
(19) Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128 (26), 8694. doi: 10.1021/ja062027+
(20) Wang, D. P.; Belharouak, I.; Zhou, G.W.; Amine, K. Adv. Funct. Mater. 2013, 23 (8), 1070. doi: 10.1002/adfm.v23.8
(21) Chen, Z.; Ren, Y.; Lee, E.; Johnson, C.; Qin, Y.; Amine, K. Adv. Energy Mater. 2013, 3 (6), 729. doi: 10.1002/aenm.201201059
(22) Park, Y. J.; Hong, Y. S.;Wu, X. L.; Kim, M. G.; Ryu, K. S.; Chang, S.H. J. Electrochem. Soc. 2004, 151 (5), A720.
(23) Meng, Y. S.; Ceder, G.; Grey, C. P.; Yoon,W. S.; Jiang, M.; Bréger, J.; Horn, Y. S. Chem. Mater. 2005, 17 (9), 2386. doi: 10.1021/cm047779m
(24) Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y. S.; Horn, Y. S.; Ceder, G.; Grey, C. P. J. Solid State Chem. 2005, 178 (9), 2575. doi: 10.1016/j.jssc.2005.05.027
(25) Kim, J. S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M. Chem. Mater. 2004, 16 (10), 1996. doi: 10.1021/cm0306461
(26) Armstrong, A. R.; Bruce, P. G. Electrochem. Solid. St. 2004, 7 (1), A1.
(27) Park, M. S.; Lee, J.W.; Choi,W.; Im, D.; Doo, S. G.; Park, K. S. J. Mater. Chem. 2010, 20 (34), 7208. doi: 10.1039/c0jm00617c
(28) Weill, F.; Tran, N.; Martin, N.; Croguennec, L.; Delmas, C. Electrochem. Solid. St. 2007, 10 (8), A194.
(29) Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149 (7), A815.
(30) Park, Y. J.; Hong, Y. S.;Wu, X.; Ryu, K. S.; Chang, S. H. J. Power Sources 2004, 129 (2), 288. doi: 10.1016/j.jpowsour.2003.11.024
(31) Hong, Y. S.; Park, Y. J.; Ryu, K. S.; Chang, S. H.; Kim, M. G. J. Mater. Chem. 2004, 14 (9), 1424. doi: 10.1039/b311888f
(32) Jain, G.; Yang, J. S.; Balasubramanian, M.; Xu, J. J. Chem. Mater. 2005, 17 (15), 3850. doi: 10.1021/cm0503329
(33) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vauqhey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/b702425h
(34) Bareno, J.; Lei, C. H.;Wen, J. G.; Kang, S. H.; Petrov, I.; Abraham, D. P. Adv. Mater. 2010, 22 (10), 1122. doi: 10.1002/adma.200904247
(35) Koyama, Y.; Tanaka, I.; Nagao, M.; Kanno, R. J. Power Sources 2009, 189 (1), 798. doi: 10.1016/j.jpowsour.2008.07.073
(36) Bréger, J.; Meng, Y. S.; Hinuma, Y.; Kumar, S. D.; Kang, K.; Horn, Y. S.; Ceder, G.; Grey, C. P. Chem. Mater. 2006, 18 (20), 4768. doi: 10.1021/cm060886r
(37) Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; Thackeray, M. M. Chem. Mater. 2008, 20 (19), 6095. doi: 10.1021/cm801245r
(38) Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. J. Mater. Chem. 2005, 15 (23), 2257. doi: 10.1039/b417616m
(39) Belharouak, I.; Koenig, G. M., Jr.; Ma, J.W.;Wang, D. P.; Amine, K. Electrochem. Commun. 2011, 13 (3), 232. doi: 10.1016/j.elecom.2010.12.021
(40) Myung, S. T.; Kumagai, N.; Komaba, S.; Chung, H. T. Solid State Ionics 2001, 139 (1), 47.
(41) Kim, Y.; Hyun, S. K.; Martin, S.W. Electrochim. Acta 2006, 52 (3), 1316. doi: 10.1016/j.electacta.2006.07.033
(42) Morales, J.; Perez-Vicente, C.; Tirado, J. L. Mater. Res. Bull. 1990, 25 (5), 623. doi: 10.1016/0025-5408(90)90028-Z
(43) Delmas, C.; Peres, J. P.; Rougier, A.; Demourgues, A.;Weill, F.; Chadwick, A.; Broussely, M.; Perton, F.; Biensan, P.;Willmann, P. J. Power Sources 1997, 68 (1), 120. doi: 10.1016/S0378-7753(97)02664-5
(44) Kim, J. M.; Chung, H. T. Electrochim. Acta 2004, 49 (21), 3573. doi: 10.1016/j.electacta.2004.03.025
(45) Fey, G. T. K.; Shiu, R. F.; Subramanian, V.; Chen, J. G.; Chen, C. L. J. Power Sources 2002, 103 (2), 265. doi: 10.1016/S0378-7753(01)00859-X
(46) Kim, J. H.; Park, C.W.; Sun, Y. K. Solid State Ionics 2003, 164 (1), 43.
(47) Yu, L.; Qiu,W.; Lian, F.; Huang, J.; Kang, X. L. J. Alloy. Compd. 2009, 471 (1), 317
(48) Rossouw, M. H.; Liles, D. C.; Thackeray, M. M. J. Solid State Chem. 1993, 104 (2), 464. doi: 10.1006/jssc.1993.1182
(49) Robertson, A. D.; Bruce, P. G. Chem. Commun. 2002, 2790.
(50) Tran, N.; Croguennec, L.; Ménétrier, M.;Weill, F.; Biensan, P.; Jordy, C.; Delmas, C. Chem. Mater. 2008, 20 (15), 4815. doi: 10.1021/cm070435m
(51) Jiang, M.; Key, B.; Meng, Y. S.; Grey, C. P. Chem. Mater. 2009, 21 (13), 2733. doi: 10.1021/cm900279u
(52) Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9 (4), 787. doi: 10.1016/j.elecom.2006.11.006
(53) Kalyani, P.; Chitra, S.; Mohan, T.; Gopukumar, S. J. Power Sources 1999, 80 (1), 103.
(54) Robertson, A. D.; Bruce, P. G. Chem. Mater. 2003, 15 (10), 1984. doi: 10.1021/cm030047u
(55) Toshimi, T.; Hiroshi, H.; Etsuo, A. K. J. Solid State Chem. 1995, 115 (2), 420. doi: 10.1006/jssc.1995.1154
(56) Belharouak, I.; Koenig, G. M., Jr.; Ma, J.W.;Wang, D. P.; Amine, K. Electrochem. Commun. 2011, 13 (3), 232. doi: 10.1016/j.elecom.2010.12.021
(57) Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13 (12-13), 943. doi: 10.1002/1521-4095(200107)13:12/13<943::AIDADMA943> 3.0.CO;2-J
(58) Johnson, C. S.; Korte, S. D.; Vaughey, J. T.; Thackeray, M. M.; Bofinger, T. E.; Hom, Y. S.; Hackney, S. A. J. Power Sources 1999, 81, 491.
(59) Wang, Z.;Wu, F.; Su, Y. F.; Bao, L. Y.; Chen, L.; Li, N.; Chen, S. Acta Phys. -Chim. Sin. 2012, 28 (4), 823. [王昭, 吴锋, 苏岳锋, 包丽颖, 陈来, 李宁, 陈实. 物理化学学报, 2012, 28 (4), 823.] doi: 10.3866/PKU.WHXB201202102

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] ZHAO Shun-Sheng, LI Lan-Lan, LIU Xiang-Rong, DING Zuo-Cheng, YANG Zai-Wen. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones[J]. Acta Phys. Chim. Sin., 2017, 33(2): 356-363.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2339-2358.
[10] CAO Shi, ZENG Li-Li, XIE Jing, WAN Shi-Gang, Li Dan, ZHANG Hui. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2480-2490.
[11] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[12] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[13] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[14] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[15] LI Wan-Fei, LIU Mei-Nan, WANG Jian, ZHANG Yue-Gang. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon[J]. Acta Phys. Chim. Sin., 2017, 33(1): 165-182.