Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 544-550    DOI: 10.3866/PKU.WHXB201401021
CATALYSIS AND SURFACE SCIENCE     
Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption
QIN Yu-Cai1,2, GAO Xiong-Hou3, DUAN Lin-Hai2, FAN Yue-Chao2, YU Wen-Guang2, ZHANG Hai-Tao3, SONG Li-Juan1,2
1 College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266426, Shandong Province, P. R. China;
2 Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China;
3 Petrochemical Research Institute, PetroChina Company Limited, Beijing 100007, P. R. China
Download:   PDF(842KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of olefin and aromatic hydrocarbons, as well as the acidic catalytic reactions on the adsorption desulfurization performance of CeY zeolites prepared by liquid phase ion exchange (LPIE) technique were systemically investigated. The capacities of sulfur removal were measured by fixed-bed breakthrough experiments. It is shown that the desulfurization performance of the adsorbents is reduced by olefin and aromatic hydrocarbons in model gasoline with olefin having a more significant effect. In-situ Fourier transform infrared (FTIR) spectroscopy was used to study the adsorption of thiophene, cyclohexene, and benzene on the zeolites. The effects of the olefin and aromatic hydrocarbons differed. For the olefins, the desulfurization capacity of the CeY adsorbents depends on the surface acidity of the zeolites, particularly on the Brönsted acidity. Protonation of olefin and thiophene compounds can be found at Brönsted acidic sites. It is the oligomerization of the protonated species that decrease the adsorption of other thiophenes. It is, therefore, the acidic catalytic reactions caused by the strong Brönsted acidity on the adsorbent surface that could be the dominant factor for olefin hydrocarbons. While for the aromatic hydrocarbons, the decreased desulfurization capacity can be ascribed to the competitive adsorption on the active sites by π-complexation between the organic sulfur compounds and arenes.



Key wordsAdsorption desulfurization      Brö      nsted acidity      π-complexation      Protonization      Oligomerization     
Received: 06 October 2013      Published: 02 January 2014
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20976077, 21076100), National Key Basic Research Program of China (973) (2007CB216403), China National Petroleum Corporation (10-01A-01-01-01), and Innovation Team of Liaoning Province Colleges, China.

Corresponding Authors: SONG Li-Juan     E-mail: lsong56@263.net
Cite this article:

QIN Yu-Cai, GAO Xiong-Hou, DUAN Lin-Hai, FAN Yue-Chao, YU Wen-Guang, ZHANG Hai-Tao, SONG Li-Juan. Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption. Acta Phys. Chim. Sin., 2014, 30(3): 544-550.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201401021     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I3/544

(1) Yang, R. T.; Hernández-Maldonado, A. J.; Yang, F. H. Science 2003, 301 (5629), 79. doi: 10.1126/science.1085088
(2) Velu, S.; Ma, X. L.; Song, C. S.; Namazian, M.; Sethuraman, S.; Venkataraman, G. Energy Fuels 2005, 19 (3), 1116. doi: 10.1021/ef049800b
(3) Jeevanandam, P.; Klabunde, K. J.; Tetzler, S. H. Microporous Mesoporous Mat. 2005, 79 (1), 101.
(4) Nair, S.; Tatarchuk, B. J. Fuel 2010, 89 (11), 3218. doi: 10.1016/j.fuel.2010.05.006
(5) Santos, A. L.; Reis, R. A.; Rossa, V.; Reis, M. M.; Costa, A. L. H.; Veloso, C. O.; Henriques, C. A.; Zotin, F. M. Z.; Paredes, M. L. L.; Silveira, E. B.; Chiaro, S. S. X. Mater. Lett. 2012, 83, 158. doi: 10.1016/j.matlet.2012.06.011
(6) Marín-Rosas, C.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F. R.; Hernández-Tapia, G.; Rodríguez-Otal, L. M. Ind. Eng. Chem. Res. 2010, 49 (9), 4372. doi: 10.1021/ie901756b
(7) Seredych, M.; Bandosz, T. J. Fuel Process. Technol. 2010, 91 (6), 693. doi: 10.1016/j.fuproc.2010.01.019
(8) Fallah, R. N.; Azizian, S. Fuel Process. Technol. 2012, 93 (1), 45. doi: 10.1016/j.fuproc.2011.09.012
(9) Park, J. G.; Ko, C. H.; Yi, K. B.; Park, J.; Han, S.; Cho, S.; Kim, J. Appl. Catal. B: Environ. 2008, 81 (3), 244.
(10) Subhan, F.; Liu, B.; Zhang, Y.; Li, X. Fuel Process. Technol. 2012, 97, 71. doi: 10.1016/j.fuproc.2012.01.016
(11) Shao, X. C.; Duan, L. H.;Wu, Y. Y.; Qin, Y. C.; Yu,W. G.; Wang, Y.; Li, H. L.; Sun, Z. L.; Song, L. J. Acta Phys. -Chim. Sin. 2012, 28, 1467. [邵新超, 段林海, 武玉叶, 秦玉才, 于文 广, 王源, 李怀雷, 孙兆林, 宋丽娟. 物理化学学报, 2012, 28,1467.] doi: 10.3866/PKU.WHXB201203312
(12) Shao, X. C.; Zhang, X. T.; Yu,W. G.;Wu, Y. Y.; Qin, Y. C.; Sun, Z. L.; Song, L. J. Appl. Surf. Sci. 2012, 263, 1. doi: 10.1016/j.apsusc.2012.07.142
(13) Yang, R. T.; Takahashi, A.; Yang, F. H. Ind. Eng. Chem. Res 2001, 40 (26), 6236. doi: 10.1021/ie010729w
(14) Velu, S.; Ma, X. L.; Song, C. S. Ind. Eng. Chem. Res. 2003, 42 (21), 5293. doi: 10.1021/ie020995p
(15) Hernández-Maldonado, A. J.; Yang, R. T. Ind. Eng. Chem. Res. 2003, 42 (1), 123. doi: 10.1021/ie020728j
(16) Hernández-Maldonado, A. J.; Yang, R. T. J. Am. Chem. Soc. 2004, 126 (4), 992.
(17) Hernández-Maldonado, A. J.; Yang, R. T. Ind. Eng. Chem. Res. 2004, 43 (4), 1081. doi: 10.1021/ie034206v
(18) Yang, R. T.; Hernández-Maldonado, A. J. Catal. Rev. -Sci. Eng. 2004, 46 (2), 111. doi: 10.1081/CR-200032697
(19) Hernández-Maldonado, A. J.; Yang, F. H.; Qi, G.; Yang, R. T. Appl. Catal. B: Environ. 2005, 56 (1), 111.
(20) Tang, K.; Song, L. J.; Duan, L. H.; Li, X. Q.; Gui, J. Z.; Sun, Z. L. Fuel Process. Technol. 2008, 89 (1), 1. doi: 10.1016/j.fuproc.2007.06.002
(21) Wang, H. G.; Jiang, H.; Xu, J.; Sun, Z. L.; Zhang, X. T.; Zhu, H. L.; Song, L. J. Acta Phys. -Chim. Sin. 2008, 24, 1714. [王洪国, 姜恒, 徐静, 孙兆林, 张晓彤, 朱赫礼, 宋丽娟. 物理化学学报, 2008, 24, 1714.] doi: 10.3866/PKU.WHXB20080933
(22) Ju, X. F.; Jin, L. L.; Ma, T.; Chen, X. L.; Song, L. J. Acta Phys. -Chim. Sin. 2009, 25, 2256. [鞠秀芳, 靳玲玲, 马涛, 陈晓陆, 宋丽娟. 物理化学学报, 2009, 25, 2256.] doi: 10.3866/PKU.WHXB20091024
(23) Wang,W. Y.; Pan, M. X.; Qin, Y. C.;Wang, L. T.; Song, L. J. Acta Phys. -Chim. Sin. 2011, 27, 1176. [王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. 物理化学学报, 2011, 27, 1176.] doi: 10.3866/PKU.WHXB20110442
(24) Lin, L.; Zhang, Y.; Zhang, H.; Lu, F. J. Colloid Interface Sci. 2011, 360, 753. doi: 10.1016/j.jcis.2011.04.075
(25) Wang, H. G.; Song, L. J.; Jiang, H.; Xu, J.; Jin, L. L.; Zhang, X. T.; Sun, Z. L. Fuel Process. Technol. 2009, 90 (6), 835. doi: 10.1016/j.fuproc.2009.03.004
(26) Duan, L. H.; Gao, X. H.; Meng, X. H.; Zhang, H. T.;Wang, Q.; Qin, Y. C.; Zhang, X. T.; Song, L. J. J. Phys. Chem. C 2012, 116 (49), 25748. doi: 10.1021/jp303040m
(27) Shi, Y. C.; Yang, X. J.; Tian, F. P.; Jia, C. Y.; Chen, Y. Y. J. Nat. Gas Chem. 2012, 21 (4), 421. doi: 10.1016/S1003-9953(11)60385-X
(28) Chen, N. Y.; Mitchell, T. O.; Olson, D. H.; Pelrine, B. P. Ind. Eng. Chem. Prod. Res. Dev. 1977, 16 (3), 247. doi: 10.1021/i360063a012
(29) Garcia, C.; Lercher, J. J. Phys. Chem. 1992, 96 (6), 2669. doi: 10.1021/j100185a050
(30) Chica, A.; Strohmaier, K.; Iglesia, E. Langmuir 2004, 20 (25), 10982. doi: 10.1021/la048320+
(31) Richardeau, D.; Joly, G.; Canaff, C.; Magnoux, P.; Guisnet, M.; Thomas, M.; Nicolaos, A. Appl. Catal. A: Gen. 2004, 263 (1), 49. doi: 10.1016/j.apcata.2003.11.039
(32) Deangelis, B. A.; Appierto, G. J. Colloid Interface Sci. 1975, 53(1), 14. doi: 10.1016/0021-9797(75)90029-6
(33) Datka, J.; Sulikowski, B.; Gil, B. J. Phys. Chem. 1996, 100 (27), 11242. doi: 10.1021/jp951523+
(34) Gil, B.; MierzyDska, K.; SzczerbiDska, M.; Datka, J. Microporous Mesoporous Mat. 2007, 99 (3), 328. doi: 10.1016/j.micromeso.2006.09.025
(35) Rabo, J. A.; Angell, C. L.; Kasai, P. H.; Schoemaker, V. Discuss. Faraday Soc. 1966, 41, 328. doi: 10.1039/df9664100328
(36) Ward, J.W. J. Phys. Chem. 1968, 72 (12), 4211. doi: 10.1021/j100858a046
(37) Layman, K. A.; Bussell, M. E. J. Phys. Chem. B 2004, 108 (40), 15791. doi: 10.1021/jp047882z
(38) Garcia, C. L.; Lercher, J. A. J. Phys. Chem. 1992, 96 (6), 2669. doi: 10.1021/j100185a050
(39) Zhang, X. T.; Yu,W. G.; Qin, Y. C.; Dong, S.W.; Pei, T. T.; Wang, L.; Song, L. J. Acta Phys. -Chim. Sin. 2013, 29, 1273. [张晓彤, 于文广, 秦玉才, 董世伟, 裴婷婷, 王琳, 宋丽娟.物理化学学报, 2013, 29, 1273.] doi: 10.3866/PKU.WHXB201303183
(40) Qin, Y. C.; Mo, Z. S.; Yu,W. G.; Dong, S.W.; Duan, L. H.; Gao, X. H.; Song, L. J. Appl. Surf. Sci. 2014, 292, 5. doi: 10.1016/j.apsusc.2013.11.036
(41) Yang, S.; Kondo, J. N.; Domen, K. Catal. Today 2002, 73 (1), 113.
(42) Kukulska-Zajac, E.; Kozyra, P.; Datka, J. Appl. Catal. A: Gen. 2006, 307 (1), 46. doi: 10.1016/j.apcata.2006.03.005

[1] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[2] LI Xiang-Cheng, ZHANG Yu, XIA Yin-Jiang, HU Bi-Cheng, ZHONG-Lin, WANG Yan-Qin, LU Guan-Zhong. One-Pot Catalytic Conversion of Xylose to Furfural on Mesoporous Niobium Phosphate[J]. Acta Phys. Chim. Sin., 2012, 28(10): 2349-2354.
[3] WANG Wang-Yin, PAN Ming-Xue, QIN Yu-Cai, WANG Ling-Tao, SONG Li-Juan. Effects of Surface Acidity on the Adsorption Desulfurization of Cu(I)Y Zeolites[J]. Acta Phys. Chim. Sin., 2011, 27(05): 1176-1180.
[4] FAN Min-Guang, LI Bin, ZHANG Fei-Yue, LI Wang-Liang, XING Jian-Min, LIU Zi-Li. Distribution of Copper Ions in a CuLaHY Zeolite and Its Performance in Adsorption Desulfurization[J]. Acta Phys. Chim. Sin., 2009, 25(03): 495-501.
[5] HU Wei;LUO Qing;LI Shen-Hui;SHEN Wan-Ling;YUE Yong;DENG Feng. Base-induced Brönsted Acid Sites on Dealuminated HY Zeolite: A Solid-state NMR Spectroscopy Study[J]. Acta Phys. Chim. Sin., 2006, 22(10): 1233-1237.
[6] TANG Ke;SONG Li-Juan;DUAN Lin-Hai;LI Xiu-Qi;GUI, Jian-Zhou;SUN Zhao-Lin. Deep Desulfurization by Selective Adsorption on Heteroatom Zeolite Prepared by Secondary Synthesis[J]. Acta Phys. Chim. Sin., 2006, 22(09): 1116-1120.
[7] WANG Xiao-Hua; TAO Guo-Hong; WU Xiao-Mu; KOU Yuan. Investigation of the Acidity of Ionic Liquids by IR Spectroscopy[J]. Acta Phys. Chim. Sin., 2005, 21(05): 528-533.
[8] An Zeng-Jian;Zhou Peng;Jian Xi-Gao;Cai Tian-Xi. Sulfonated Poly (phthalazinone ether sulfone ketone) Catalyst with High Thermal Stability[J]. Acta Phys. Chim. Sin., 2003, 19(07): 654-656.
[9] An Zeng-Jian;Zhou Peng;Jian Xi-Gao;Cai Tian-Xi. Catalytic Activity of Sulfonated Poly (phthalazinone ether sulfone ketone) Resin[J]. Acta Phys. Chim. Sin., 2003, 19(01): 1-3.
[10] Chen Lai-Yuan,Xu Zhu-Sheng,Zhang Tao,Li Xin-Sheng,Lin Li-Wu. Structure of Mo/HZSM-5 Catalysts and Their Reactivities of Methane Dehydro-oligomerization under Non-oxidizing Conditions[J]. Acta Phys. Chim. Sin., 1995, 11(07): 601-606.