Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 476-484    DOI: 10.3866/PKU.WHXB201401071
Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites
ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, GOU Xing-Long
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, Sichuan Province, P. R. China
Download:   PDF(1068KB) Export: BibTeX | EndNote (RIS)      


WO3 nanorods/graphene nanocomposites (WO3/RGO) were prepared by the solvothermal treatment of tungsten hexachloride and graphene oxide in alcohol. The electrochemical performance of WO3/RGO as anode materials for lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The discharge capacity of the composite at the first cycle was 761.4 mAh·g-1, and about 635 mAh·g-1 of reversible capacity remained after 100 cycles at a rate of 0.1C (1C=638 mA·g-1). The corresponding retention rate was 83.4%. The reversible capacity remained lager than 460 mAh·g-1 at a rate of 5C. WO3/RGO exhibited excellent cycling stability and rate performance, and has potential in advanced lithium-ion batteries.

Key wordsTungsten trioxide      Graphene      Nanocomposite      Lithium-ion battery      Anode material     
Received: 06 August 2013      Published: 07 January 2014
MSC2000:  O646  

The project was supported by the Natural Science Foundation of China (51071131) and Program for New Century Excellent Talents in University (NCET-10-0890).

Corresponding Authors: GOU Xing-Long     E-mail:
Cite this article:

ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, GOU Xing-Long. Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites. Acta Phys. Chim. Sin., 2014, 30(3): 476-484.

URL:     OR

(1) Poizot, P.; Laruelle, S.; Dupont, L.; Tarascon, J. J. M. Nature 2000, 407, 496. doi: 10.1038/35035045
(2) Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2008, 20, 1. doi: 10.1002/adma.v20:16
(3) Chen, J.; Xu, L. N.; Li,W. Y.; Gou, X. L. Adv. Mater. 2005, 17, 5.
(4) Wang, B.;Wu, H. B.; Zhang, L.; Lou, X.W. Angew. Chem. Int. Edit. 2013, 52, 4165. doi: 10.1002/anie.201300190
(5) Zhen, F. M.; Geng, B. Y.; Gou, Y. J. Chem. Eur. J. 2009, 15, 6169. doi: 10.1002/chem.v15:25
(6) Manickam, S.; Nanda, G.; Masaki, Y.; Kenichi, N. Nano Energy 2012, 1, 503. doi: 10.1016/j.nanoen.2012.03.003
(7) Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang,W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. J. Solid State Electrochem. 2007, 180, 98.
(8) Qiu, Y. C.; Xu, G. L.; Kuang, Q.; Sun, S. G.; Yang, S. H. Nano Res. 2012, 5, 8260.
(9) Guo, X.W.; Fang, X. P.; Sun, Y.; Shen, L. Y.;Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 226, 75. doi: 10.1016/j.jpowsour.2012.10.068
(10) Sun, X. L.;Wang, X. H.; Qiao, L.; Hu, D. K.; Feng, N.; Li, X. W.; Liu, Y. Q.; He, D. Y. Electrochim. Acta 2012, 66, 204. doi: 10.1016/j.electacta.2012.01.083
(11) Shen, Y. X.; Yan, L.; Song, H. H.; Yang, J.; Yang, G.; Chen, X. H.; Zhou, J. S.; Yu, Z. Z.; Yang, S. B. Angew. Chem. Int. Edit. 2012, 51, 1. doi: 10.1002/anie.201106864
(12) Zhao, Y.; Li, J. X.; Ding, Y. H.; Guan, L. H. Chem. Commun. 2011, 47, 7416. doi: 10.1039/c1cc12171e
(13) Ji, L.W.; Zhang, X.W. Energy Environ. Sci. 2010, 3, 124. doi: 10.1039/b912188a
(14) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X. S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27, 1439. [程凤, 黄可龙, 刘素琴, 房雪松, 张新. 物理化学学报, 2011, 27, 1439.] doi: 10.3866/PKU.WHXB20110607
(15) Ren, Y. M.; Zhang, J.; Liu, Y. Y.; Li, H. B.;Wei, H. J.; Li, B. J.; Wang, X. Y. ACS Appl. Mater. Interfaces 2012, 4, 4776. doi: 10.1021/am301131h
(16) Fang,W.; Zuo, P. J.; Ma, Y. L.; Chen, X. Q.; Liao, L. X.; Yin, G. P. Electrochim. Acta 2013, 94, 294. doi: 10.1016/j.electacta.2013.01.132
(17) Chen, Z.; Berciaud, S. P.; Nuckolls, C.; Heinz, T. F.; Brus, L. E. ACS Nano 2010, 4, 2964. doi: 10.1021/nn1005107
(18) Guo, P.; Song, H. H.; Chen, X. H. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036
(19) Pumera, M. Energy Environ. Sci. 2011, 4, 668. doi: 10.1039/c0ee00295j
(20) Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Carbon 2009, 47, 2049. doi: 10.1016/j.carbon.2009.03.053
(21) Li, D.; Muller, M.; Gilje, S.; Kaner, R.;Wallace, G. Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451
(22) Yoo, E. J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277. doi: 10.1021/nl800957b
(23) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(24) Li, R.;Wei, Z. D.; Gou, X. L.; Xu,W. RSC Adv. 2013, 3, 9978. doi: 10.1039/c3ra41079j
(25) Luo, B.; Fang, Y.;Wang, B.; Zhou, J.; Song, H.; Zhi, L. J. Energy Environ. Sci. 2012, 5, 5226. doi: 10.1039/c1ee02800f
(26) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z
(27) Yang, J. Q.; Jiao, L. F.; Zhao, Q. Q.;Wang, Q. H.; Gao, H. Y.; Huan, Q. N.; Zheng,W. J.;Wang, Y. J.; Yuan, H. T. J. Mater. Chem. 2012, 22, 3699. doi: 10.1039/c2jm15837j
(28) Qin, J.W.; Cao, M. H.; Li, N.; Hu, C.W. J. Mater. Chem. 2011, 21, 17167. doi: 10.1039/c1jm12692j
(29) Thangavel, S.; Elayaperumal, M.; Venugopal, G. Mater. Express 2012, 2, 327. doi: 10.1166/mex.2012.1087
(30) Akhavan, O.; Choobtashani, M.; Ghaderi, E. J. Phys. Chem. C 2012, 116, 9653. doi: 10.1021/jp301707m
(31) Gou, J. J.; Li, Y.; Zhu, S. M.; Chen, Z. X.; Liu, Q. L.; Zhang, D.; Moon,W. J, Song, D. M. RSC Adv. 2012, 2, 1356. doi: 10.1039/c1ra00621e
(32) Li,W. J.; Fu, Z.W. Appl. Surf. Sci. 2010, 256, 2447. doi: 10.1016/j.apsusc.2009.10.085
(33) Delmer, O.; Balaya, P.; Kienle, L.; Maier, J. Adv. Mater. 2008,20, 501.
(34) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293. [丁朋, 许友龙, 孙孝飞. 物理化学学报, 2013, 29, 293.] doi: 10.3866/PKU.WHXB201211142
(35) Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarasconet, J. M. J. Electrochem. Soc. 2002, 149, A627.
(36) Jamnik, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5, 5215. doi: 10.1039/b309130a
(37) Liu, H.;Wang, X. L.; Hu, J. S.;Wexler, D. Electrochem. Commun. 2008, 10, 1879. doi: 10.1016/j.elecom.2008.09.036
(38) Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388. doi: 10.1039/c3ee23870a
(39) Marappan, S.; Satoshi, M.; Takaaki, T.; Itaru, H. J. Phys. Chem. C 2012, 116, 12475. doi: 10.1021/jp303121n
(40) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28, 105. [许科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
(41) Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2792.
(42) Gan, L.; Guo, H. J.;Wang, Z. X.; Li, X. H.; Peng,W. J.;Wang, J. X.; Huang, S. L.; Su, M. R. Electrochim. Acta 2013, 104, 117. doi: 10.1016/j.electacta.2013.04.083
(43) Zhuo, L. H.;Wu, Y. Q.;Wang, L. Y.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. RSC Adv. 2012, 2, 5084. doi: 10.1039/c2ra00002d
(44) Zou, Y. Q.; Kan, J.;Wang, Y. J. Phys. Chem. C 2011, 115, 20747. doi: 10.1021/jp206876t
(45) Xue, X. Y.; Ma, C. H.; Cui, C. X.; Xing, L. L. Solid State Sci. 2011, 11, 1526.
(46) Chen, J.; Xu, L. N.; Li,W. Y. Adv. Mater. 2005, 17, 582.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[8] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[9] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[10] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[11] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[12] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[13] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[14] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[15] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.