Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 513-519    DOI: 10.3866/PKU.WHXB201401073
CATALYSIS AND SURFACE SCIENCE     
Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure
WANG Jing-Sheng1,2, WANG En-Jun3, YU Yan-Long1,2, GUO Li-Mei1,2, CAO Ya-An1,2
1 School of Physics, Nankai University, Tianjin 300071, P. R. China;
2 Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institutes, Nankai University, Tianjin 300457, P. R. China;
3 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
Download:   PDF(786KB) Export: BibTeX | EndNote (RIS)      

Abstract  

An In-doped TiO2 thin film with a three-dimensional (3D) ordered structure (IO-TiO2-In) was prepared by the self-assembly template method of polystyrene colloidal crystal growth and sol-gel method. The visible light photocatalytic activity of the IO-TiO2-In thin film for the degradation of formaldehyde is five times that of TiO2 and undoped IO-TiO2. The crystal structure, surface microstructure, and energy band structure of the catalyst were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The IO-TiO2-In thin film is an ordered anatase structure, which increases the specific surface area and photo efficiency, compared with those of pure TiO2. Doped In ions form In2O3 and O-In-Clx (x=1, 2) species on the surface of the thin film. This increases the absorption of visible light, and promotes the separation of photogenerated charge carriers. It improves the efficiency of photogenerated charge carriers in the photocatalytic reaction at the solid/gas interface, and significantly increases the visible light photocatalytic activity.



Key wordsThree-dimensional ordered structure      TiO2 thin film      In ion doping      In2O3      In-Clx species      Visible light photocatalytic activity     
Received: 28 November 2013      Published: 07 January 2014
MSC2000:  O643  
  O644  
Fund:  

The project was supported by the National Natural Science Foundation of China (51072082, 21173121, 51372120, 51302269).

Corresponding Authors: CAO Ya-An     E-mail: caoya@nankai.edu.cn
Cite this article:

WANG Jing-Sheng, WANG En-Jun, YU Yan-Long, GUO Li-Mei, CAO Ya-An. Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure. Acta Phys. Chim. Sin., 2014, 30(3): 513-519.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201401073     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I3/513

(1) Choi,W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. doi: 10.1021/j100102a038
(2) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano Lett. 2006, 6, 1080. doi: 10.1021/nl0600979
(3) Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
(4) Wang, C.; Bahnemanna, D.W.; Dohrmannb, J. K. Chem. Commun. 2000, 1539.
(5) Jing, L. Q.; Fu, H. G.;Wang, B. Q.;Wang, D. J.; Xin, B. F.; Li, S. D.; Sun, J. Z. Appl. Catal. B 2006, 62, 282. doi: 10.1016/j.apcatb.2005.08.012
(6) Fresno, F.; Tudela, D.; Coronado, J. M.; Fernández-Gracía, M.; Hungría, A. B.; Soria, J. Phys. Chem. Chem. Phys. 2006, 8, 2421. doi: 10.1039/b601920j
(7) Yu, J. G.; Liu, S.W.; Zhou, M. H. J. Phys. Chem. C 2008, 112, 2050. doi: 10.1021/jp0770007
(8) Huo, Y. N.; Zhu, J.; Li, J. X.; Li, G. S.; Li, H. X. Journal of Molecular Catalysis A: Chemical 2007, 278, 237. doi: 10.1016/j.molcata.2007.07.054
(9) Wu, C.; Chao, C.; Kuo, F. Catal. Today 2004, 97, 103. doi: 10.1016/j.cattod.2004.04.055
(10) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. doi: 10.1016/S0021-9517(02)00104-5
(11) Wang, P.;Wang, D. J.; Xie, T. F.; Li, H. Y.; Yang, M.;Wei, X. Mater. Chem. Phys. 2008, 109, 181. doi: 10.1016/j.matchemphys.2007.11.019
(12) Liang, C. H.; Li, F. B.; Liu, C. S.; Lu, J. L.;Wang, X. G. Dyes and Pigments 2008, 76, 477. doi: 10.1016/j.dyepig.2006.10.006
(13) Cao, Y. Q.; He, T.; Zhao, L. S.;Wang, E. J.; Yang,W. S.; Cao, Y. A. J. Phys. Chem. C 2009, 113, 18121. doi: 10.1021/jp9069288
(14) Wang, E. J.; Yang, H. Y.; Cao, Y. A. J. Chem. 2009, 67, 2759.
(15) Luo, D. C.; Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A. Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632
(16) Wang, E. J.; Yang,W. S.; Cao, Y. A. J. Phys. Chem. C 2009, 113, 20912. doi: 10.1021/jp9041793
(17) Cao, Y. Q.; He, T.; Chen, Y. M. J. Phys. Chem. C 2010, 114, 3627. doi: 10.1021/jp100786x
(18) Yuan, J. X.;Wang, E. J.; Chen, Y. M.; Yang,W. S.; Yao, J. H.; Cao, Y. A. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139
(19) Chen, J. I. L.; Freymann, G.; Choi, S. Y.; Kitaev, V. G.; Ozin, A. Adv. Mater. 2006, 18, 1915.
(20) Chen, I. L.; Freymann, G. V.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2007, 129, 1196. doi: 10.1021/ja066102s
(21) Chen, J. I. L.; Loso, E.; Ebrahim, N.; Ozin, G. A. J. Am. Chem. Soc. 2008, 130, 5420. doi: 10.1021/ja800288f
(22) Chen, J. I. L.; Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369. doi: 10.1039/b708474a
(23) King, J. S.; Graugnard, E.; Summers, C. J. Adv. Mater. 2005, 17, 1010.
(24) Ren, M.; Ravikrishna, R.; Valsaraj, K. T. Environ. Sci. Technol. 2006, 40, 7029. doi: 10.1021/es061045o
(25) Doong, R. A.; Chang, S. M.; Hung, Y. C. Sep. Purif. Technol. 2007, 58, 192. doi: 10.1016/j.seppur.2007.07.029
(26) Li, Q.; Shang, J. K. J. Am. Chem. Soc. 2008, 91, 660.
(27) Gao, B. F.; Ma, Y.; Cao, Y. A.; Yang,W. S.; Yao, J. N. J. Phys. Chem. B 2006, 110, 14391. doi: 10.1021/jp0624606
(28) Cao, Y. A.; Yang,W. S.; Chen, Y. M.; Du, H.; Yue, P. Appl. Surf. Sci. 2004, 236, 223. doi: 10.1016/j.apsusc.2004.04.020
(29) Li, J.; Zeng, H. C. J. Am. Chem. Soc. 2007, 129, 5839.
(30) Reddya, B. M.; Chowdhury, B.; Smirniotis, P. G. Appl. Catal. A 2001, 219, 53. doi: 10.1016/S0926-860X(01)00658-5
(31) Freeland, B. H.; Habeeb, J. J.; Tuck, D. G. Can. J. Chem. 1977, 55, 1527. doi: 10.1139/v77-213
(32) Zhu, J.; Zheng,W.; He, B.; Zhang, J. L.; Anpob, M. J. Mol. Catal. A: Chem. 2004, 216, 35. doi: 10.1016/j.molcata.2004.01.008
(33) Mousty-Desbuquoit, C.; Riga, J.; Verbist, J. J. J. Chem. Phys. 1983, 79, 26. doi: 10.1063/1.445567
(34) Poznyak, S. K.; Talapin, D. V.; Kulak, A. I. J. Phys. Chem. B 2001, 105, 4816. doi: 10.1021/jp003247r
(35) Cao, Y. A.; Zhang, X. T.; Yang,W. S.; Du, H.; Bai, Y. B.; Li, T. J.; Yao, J. N. Chem. Mater. 2000, 12, 3445. doi: 10.1021/cm0004432
(36) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. J. Chem. 2009, 67, 1533.

[1] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2523-2531.
[2] TIAN Hong, WANG Hui-Xiang, SHI Wei-Mei, XU Yao. Microwave-Assisted Solvothermal Synthesis of In-Si Co-Modified TiO2 Photocatalysts with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1543-1549.
[3] CHEN Peng-Peng, WANG Jing, ZHANG Chun-Li, HAO Yu-Wen, DU Hai-Ying. Preparation of Electrospun In2O3/CdO Composite and Its Formaldehyde-Sensing Properties[J]. Acta Phys. Chim. Sin., 2013, 29(08): 1827-1836.
[4] WANG Yang, SHAO Xiang, WANG Bing. Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1363-1369.
[5] YAN Wei-Ping, WANG De-Jun, CHEN Li-Ping, LU Yong-Chun, XIE Teng-Feng, LIN Yan-Hong. Properties and Photoelectrocatalytic Activity of In2O3-Sensitized ZnO Nanorod Array[J]. Acta Phys. Chim. Sin., 2013, 29(05): 1021-1027.
[6] LI Wei-Bing, BU Yu-Yu, YU Jian-Qiang. Preparation of ZnO/In2O3 Composite Hollow Spheres and Their Photoelectrocatalytic Properties to Glucose Degradation[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2676-2682.
[7] CHEN Peng, TAN Xin, YU Tao. Effects of Total Pressure and Ar/O2 Flow Ratios on Photocatalytic Properties of TiO2 Thin Films Deposited by Direct Current Facing-Target Magnetron Sputtering[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2162-2168.
[8] HU Wen-Liang, XU Gang, MA Jian-Wei, XIONG Bin, SHI Ji-Fu. Optical and Phase Transition Properties of TixV1-xO2 Thin Films[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1533-1538.
[9] CHEN Jin-Yi, LI Nian, LI Jing, ZHU Liang, PENG Chang-Jun. Synthesis and Visible Light Photocatalytic Activity of Cross-Linked Sodium Rectorite/Cu2O Nanocomposites[J]. Acta Phys. Chim. Sin., 2011, 27(04): 932-938.
[10] CHEN Dong-Po, ZHANG Xiao-Dan, WEI Chang-Chun, LIU Cai-Chi, ZHAO Ying. Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell[J]. Acta Phys. Chim. Sin., 2011, 27(02): 425-431.
[11] WANG Jin-Xing, YU Lian-Xiang, WANG Hao-Ming, RUAN Sheng-Ping, LI Jia-Jing, WU Feng-Qing. Preparation and Triethylamine Sensing Properties of Ce-Doped In2O3 Nanofibers[J]. Acta Phys. Chim. Sin., 2010, 26(11): 3101-3105.
[12] Cao Jiang-Lin;Leng Wen-Hua;Zhang Jian-Qing;Cao Chu-Nan. Adsorption Behavior and Photooxidation Kinetics of OH- at TiO2 Thin Film Electrodes[J]. Acta Phys. Chim. Sin., 2004, 20(07): 735-739.
[13] Zhao Wen-Kuan;Fang You-Ling. Synthesis of Photocatalytic Activity TiO2 Thin Films at LowTemperature[J]. Acta Phys. Chim. Sin., 2002, 18(04): 368-371.
[14] Xiao Zhong-Dang, Huang Dan, Gu Jian-Hua, Lu Zu-Hong. X-ray Photoelectron Spectroscopy Study of the Deposition of TiO2 Thin Films on Self-assembly Monolayer[J]. Acta Phys. Chim. Sin., 1998, 14(01): 57-62.