Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 460-466    DOI: 10.3866/PKU.WHXB201401074
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Characterization of Nano-LiMnPO4
YANG Wen-Chao1,2, BI Yu-Jing2, YANG Bang-Cheng2, WANG De-Yu2, SHI Si-Qi1
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China;
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, P. R. China
Download:   PDF(1121KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nano-LiMnPO4 samples were synthesized via a two-step heating polyol method. The role of the first thermal plateau temperature T1 (T1=100, 110, 120, 130, 140, 150 ℃) on the physical and electrochemical properties of the samples was investigated. Their structures and morphologies were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 sorption measurements. All samples at different plateau temperatures exhibited a sheet structure. At T1=100-120 ℃, samples contained some impurities, and their specific surface areas were <15 m2·g-1. Pure nano-LiMnPO4 was obtained at T1=130 ℃, and exhibited the largest specific surface area (46.3 m2·g-1). The specific surface areas of samples remained at 35-37 m2·g-1 with further increase in T1. The electrochemical performance of the nano-LiMnPO4 samples followed the same trend as their specific surface areas. Nano-LiMnPO4 at T1=130 ℃ exhibited the best electrochemical performance, with a discharge capacity of 129 mAh·g-1 at 0.1C rate and 81 mAh·g-1 at 5C rate. This indicated that the specific surface area is one of the key factors in determining the electrochemical performance of LiMnPO4.



Key wordsLithium-ion battery      Cathode material      Nano-LiMnPO4      Specific surface area      Polyol method     
Received: 06 December 2013      Published: 07 January 2014
MSC2000:  O646  
Fund:  

The project was supported by the Qianjiang Talent Project of Zhejiang Province, China (2012R10078), Cooperation ofWuhan and Chinese Academy of Sciences (20120216), and National Natural Science Foundation of China (51372228).

Corresponding Authors: SHI Si-Qi     E-mail: sqshi@shu.edu.cn
Cite this article:

YANG Wen-Chao, BI Yu-Jing, YANG Bang-Cheng, WANG De-Yu, SHI Si-Qi. Preparation and Electrochemical Characterization of Nano-LiMnPO4. Acta Phys. Chim. Sin., 2014, 30(3): 460-466.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201401074     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I3/460

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(2) Kim, S.W.; Kim, J.; Gwon, H.; Kang, K. J. Electrochem. Soc. 2009, 156, A635.
(3) Chen, G.; Richardson, T. J. J. Power Sources 2010, 195, 1221. doi: 10.1016/j.jpowsour.2009.08.046
(4) Chen, G.; Richardson, T. J. J. Electrochem. Soc. 2009, 156, A756.
(5) Martha, S. K.; Markovsky, B.; Grinblat, J.; Gofer, Y.; Haik, O.; Zinigrad, E.; Aurbach, D.; Drezen, T.;Wang, D.; Deghenghi, G.; Exnar, I. J. Electrochem. Soc. 2009, 156, A541.
(6) Yamada, A.; Chung, S. C. J. Electrochem. Soc. 2001, 148, A960.
(7) Wang, D. Y.; Buqa, H.; Crouzel, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Miners, J.; Poletto, L.; Grätzel, M. J. Power Sources 2009, 189, 624. doi: 10.1016/j.jpowsour.2008.09.077
(8) Liu, J. L.; Liu, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2013, 229, 203. doi: 10.1016/j.jpowsour.2012.11.093
(9) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93. doi: 10.1021/cm030347b
(10) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.
(11) Yoshida, J.; Stark, M.; Holzbock, J.; Hüsing, N.; Nakanishi, S.; Iba, H.; Abe, H.; Naito, M. J. Power Sources 2013, 226, 122. doi: 10.1016/j.jpowsour.2012.09.081
(12) Pieczonka, N. P.W.; Liu, Z. Y.; Ash, F. H.; Kim, J. H. J. Power Sources 2013, 230, 122. doi: 10.1016/j.jpowsour.2012.12.027
(13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, 1118.
(14) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. J. Electrochem. Soc. 2010, 157, A142.
(15) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260. doi: 10.1002/adfm.201000469
(16) Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aubach, D. Angew. Chem. Int. Edit. 2009, 48, 8559. doi: 10.1002/anie.v48:45
(17) Wang, D. Y.; Ouyang, C. Y.; Kwon, N. H.; Drezen, T.; Buqa, H.; Exnar, I.; Kay, A.; Miners, J. H.;Wang, M. K.; Grätzel, M. J. Electrochem. Soc. 2010, 157, A225.
(18) Zhang, B.;Wang, X.; Liu, Z.; Li, H.; Huang, X. J. Electrochem. Soc. 2010, 157, A285.
(19) Shiratsuchi, T.; Okada, S.; Doi, T.; Yamak, J. I. Electrochim. Acta 2009, 54, 3145. doi: 10.1016/j.electacta.2008.11.069
(20) Feldmann, C. Adv. Funct. Mater. 2003, 13, 101. doi: 10.1002/adfm.v13:2
(21) Feldmann, C.; Metzmacher, C. J. Mater. Chem. 2001, 11, 122. doi: 10.1039/b103167h
(22) Larcher, D.; Gérand, B.; Tarascon, J. M. Electrochem. Solid- State Lett. 1998, 2, 137.
(23) Larcher, D.; Gérand, B.; Tarascon, J. M. Int. J. Inorg. Mater. 2000, 2, 389.
(24) Kim, D. H.; Ahn, Y. S.; Kim, J. Electrochem. Commun. 2005, 7, 1340. doi: 10.1016/j.elecom.2005.09.027
(25) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Pei,W. J.;Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.] doi: 10.3866/PKU.WHXB20041017
(26) Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.
(27) Kim, T. R.; Kim, D. H.; Ryu, H.W.; Moon, J. H.; Lee, J. H.; Boo, S. J. Phys. Chem. Solids 2007, 68, 1203. doi: 10.1016/j.jpcs.2007.03.027
(28) Vasanthi, R.; Kalpana, D.; Renganathan, N. G. Electrochem. Solid-State Lett. 2008, 12, 961.
(29) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z.;Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085
(30) Moon, S.; Muralidharan, P.; Kim, D. K. Ceram. Int. 2012, 38S, S471.
(31) Shi, S. Q.; Zhang, H.; Ke, X. Z.; Ouyang, C. Y.; Lei, M. S.; Chen, L. Q. Phys. Lett. A 2009, 373, 4096. doi: 10.1016/j.physleta.2009.09.014
(32) Andersson, A. S.; Thomas, J. O.; Kalska, B.; Haggstrom, L. Electrochem. Solid-State Lett. 2000, 3, 66.
(33) Nie, P.; Shen, L. F.; Chen, L.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Phys. -Chim. Sin. 2011, 27, 2123. [聂平, 申来法, 陈琳, 苏晓飞, 张校刚, 李洪森. 物理化学学报, 2011, 27, 2123.] doi: 10.3866/PKU.WHXB20110902
(34) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093. doi: 10.1016/j.electacta.2011.01.079

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.