Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (3): 485-491    DOI: 10.3866/PKU.WHXB201401131
ELECTROCHEMISTRY AND NEW ENERGY     
Effects of Separator on the Electrochemical Performance of Electrical Double-Layer Capacitor and Hybrid Battery-Supercapacitor
SUN Xian-Zhong, ZHANG Xiong, HUANG Bo, MA Yan-Wei
Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(898KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Separators are important components in electrochemical energy storage devices such as electrical double layer capacitors (EDLCs) and hybrid battery-supercapacitors. We prepared activated carbon-based EDLCs using an electrolyte of 1 mol ·L-1 tetraethyl ammonium tetrafluoroborate (Et4NBF4) in propylene carbonate (PC), and (LiNi0.5Co0.2Mn0.3O2+activated carbon)/graphite hybrid battery-supercapacitors using a 1 mol·L-1 lithium hexafluorophate (LiPF6) Li-ion electrolyte. The physicochemical properties and effect of various separators on the electrochemical properties of the EDLC and hybrid battery-supercapacitor were studied. The four separators were nonwoven polypropylene (PP) mat, porous PP membrane, Al2O3-coated PP membrane, and cellulose paper. The surface morphology, differential scanning calorimetry, electrolyte uptake, and apparent contact angle were investigated. The electrochemical characterizations of coin cells indicated that the EDLC with cellulose separator had the highest specific capacitance and rate capability. Differences in the selfdischarge of the four cells were not obvious. The specific capacities of the hybrid battery-supercapacitors with PP membrane and nonwoven PP mat separators were approximately 20% higher than the others. The capacitor with the cellulose paper separator had the highest self-discharge rate.



Key wordsElectrical double-layer capacitor      Hybrid battery-supercapacitor      Electrolyte uptake      Apparent contact angle      Self-discharge     
Received: 21 October 2013      Published: 13 January 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51025726, 51307167).

Corresponding Authors: MA Yan-Wei     E-mail: ywma@mail.iee.ac.cn
Cite this article:

SUN Xian-Zhong, ZHANG Xiong, HUANG Bo, MA Yan-Wei. Effects of Separator on the Electrochemical Performance of Electrical Double-Layer Capacitor and Hybrid Battery-Supercapacitor. Acta Phys. -Chim. Sin., 2014, 30(3): 485-491.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201401131     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I3/485

(1) Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736
(2) Yang, X.; Cheng, C.;Wang, Y.; Qiu, L.; Li, D. Science 2013, 341, 534. doi: 10.1126/science.1239089
(3) Hu, X. B.; Deng, Z. H.; Suo, J. S.; Pan, Z. L. J. Power Sources 2009, 187, 635. doi: 10.1016/j.jpowsour.2008.11.033
(4) Hu, X. B.; Huai, Y. J.; Lin, Z. J.; Suo, J. S.; Deng, Z. H. J. Electrochem. Soc. 2007, 154, A1026.
(5) Lei, Y.; Huang, Z. H.; Shen,W. C.; Kang, F. Y.; Zheng, Y. P. Electrochim. Acta 2013, 107, 413. doi: 10.1016/j.electacta.2013.06.002
(6) Lei, Y.; Huang, Z. H.; Yang, Y.; Shen,W. C.; Zheng, Y. P.; Sun, H. Y.; Kang, F. Y. Sci. Rep. 2013, 3, 2477.
(7) Davies, A.; Yu, A. P. Can. J. Chem. Eng. 2011, 89, 1342. doi: 10.1002/cjce.v89.6
(8) Liu, S. Q.; Liu, S. Q.; Huang, K. L.; Liu, J. S.; Li, Y. K.; Fang, D.;Wang, H. M.; Xia, Y. F. J. Solid State Electrochem. 2012, 16, 1631. doi: 10.1007/s10008-011-1573-7
(9) Böckenfeld, N.; Kuhnel, R. S.; Passerini, S.;Winter, M.; Balducci, A. J. Power Sources 2011, 196, 4136. doi: 10.1016/j.jpowsour.2010.11.042
(10) Ping, L. N.; Zheng, J. M.; Shi, Z. Q.; Qi, J.;Wang, C. Y. Chin. Sci. Bull. 2013, 58, 689.
(11) Li, J. M.; Chang, K. H.;Wu, T. H.; Hu, C. C. J. Power Sources 2013, 224, 59. doi: 10.1016/j.jpowsour.2012.09.007
(12) Ping, L. N.; Zheng, J. M.; Shi, Z. Q.;Wang, C. Y. Acta Phys. -Chim. Sin. 2012, 28, 1733. [平丽娜, 郑嘉明, 时志强, 王成扬. 物理化学学报, 2012, 28, 1733.] doi: 10.3866/PKU.WHXB201205092
(13) Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. J. Electrochem. Soc. 2001, 148, A930.
(14) Cericola, D.; Kötz, R. Electrochim. Acta 2012, 72, 1. doi: 10.1016/j.electacta.2012.03.151
(15) Cericola, D.; Ruch, P.W.; Kötz, R.; Novak, P.;Wokaun, A. J. Power Sources 2010, 195, 2731. doi: 10.1016/j.jpowsour.2009.10.104
(16) Hantel, M. M.; Kaspar, T.; Nesper, R.;Wokaun, A.; Kötz, R. ECS Electrochem. Lett. 2012, 1, A1.
(17) Sun, X. Z.; Zhang, X.; Huang, B.; Zhang, H. T.; Zhang, D. C.; Ma, Y.W. J. Power Sources 2013, 243, 361. doi: 10.1016/j.jpowsour.2013.06.038
(18) Liang, Y. Z.; Cheng, S. C.; Zhao, J. M.; Zhang, C. H.; Sun, S. Y.; Zhou, N. T.; Qiu, Y. P.; Zhang, X.W. J. Power Sources 2013, 240, 204. doi: 10.1016/j.jpowsour.2013.04.019
(19) Huang, X. S. J. Solid State Electrochem. 2011, 15, 649. doi: 10.1007/s10008-010-1264-9
(20) Huang, B.; Sun, X. Z.; Zhang, X.; Zhang, D. C.; Ma, Y.W. Acta Phys. -Chim. Sin. 2013, 29, 1998. [黄博, 孙现众, 张熊, 张大成, 马衍伟. 物理化学学报, 2013, 29, 1998.] doi: 10.3866/PKU.WHXB201307031
(21) Sun, X. Z.; Zhang, X.; Zhang, D. C.; Ma, Y.W. Acta Phys. -Chim. Sin. 2012, 28, 367. [孙现众, 张熊, 张大成, 马衍伟. 物理化学学报, 2012, 28, 367.] doi: 10.3866/PKU.WHXB201112131
(22) Yi, T. F.; Xie, Y.; Zhu, Y. R.; Zhu, R. S.; Shen, H. Y. J. Power Sources 2013, 222, 448. doi: 10.1016/j.jpowsour.2012.09.020
(23) Idris, N. H.; Rahman, M. M.;Wang, J. Z.; Liu, H. K. J. Power Sources 2012, 201, 294. doi: 10.1016/j.jpowsour.2011.10.141
(24) Tonurist, K.; Thomberg, T.; Janes, A.; Romann, T.; Sammelselg, V.; Lust, E. J. Electroanal. Chem. 2013, 689, 8.
(25) Sun, X. Z.; Zhang, X.; Zhang, H. T.; Zhang, D. C.; Ma, Y.W. J. Solid State Electrochem. 2012, 16, 2597. doi: 10.1007/s10008-012-1678-7
(26) Dsoke, S.; Tian, X.; Taubert, C.; Schluter, S.;Wohlfahrt-Mehrens, M. J. Power Sources 2013, 238, 422. doi: 10.1016/j.jpowsour.2013.04.031
(27) Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. J. Power Sources 2010, 195, 5814. doi: 10.1016/j.jpowsour.2010.03.082
(28) de Levie, R. Electrochim. Acta 1963, 8, 751. doi: 10.1016/0013-4686(63)80042-0
(29) Kötz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483. doi: 10.1016/S0013-4686(00)00354-6
(30) Yang, X.; He, Y. S.; Jiang, G.; Liao, X. Z.; Ma, Z. F. Electrochem. Commun. 2011, 13, 1166. doi: 10.1016/j.elecom.2011.09.006
(31) Xu, J.; Chou, S. L.; Gu, Q. F.; Liu, H. K.; Dou, S. X. J. Power Sources 2013, 225, 172. doi: 10.1016/j.jpowsour.2012.10.033

[1] HOU Quan, GUAN Chengzhi, XIAO Guoping, WANG Jian-Qiang, ZHU Zhiyuan. Effect of Oxygen Partial Pressure on Solid Oxide Electrolysis Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] ZHANG Zhongqiang, ZHANG Shuhua, LIU Zhixi, ZHANG Zhiguo, LI Yongfang, LI Chang-Zhi, CHEN Hongzheng. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[3] HU Jiangtao, ZHENG Jiaxin, PAN Feng. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] ZHANG Meiqi, MA Yunlong, ZHENG Qingdong. Bandgap Modulation of Dithienonaphthalene-Based Small-Molecule Acceptors for Nonfullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[5] FENG Shiyu, LU Hao, LIU Zekun, LIU Yahui, LI Cuihong, BO Zhishan. Designing a High-performance A-D-A Fused-ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[6] GUPTA Monika, YAN Dong, SHEN Fugang, XU Jianzhong, ZHAN Chuanlang. Perylenediimide:Phosphonium-Based Binary Blended Small-Molecule Cathode Interlayer for Efficient Fullerene-Free Polymer Solar Cells with Open Circuit Voltage to 1.0 V[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[7] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[8] Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249.
[9] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[10] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[11] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[12] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[13] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[14] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[15] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.