Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 708-714    DOI: 10.3866/PKU.WHXB201401222
CATALYSIS AND SURFACE SCIENCE     
Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation
WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
Download:   PDF(2916KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Quasi-concave Pt-Ni alloy nanostructures were synthesized via a solvothermal method, and were thought to form by epitaxial growth on the 12 vertexes of a cuboctahedron. A simultaneous etchingovergrowth process was proposed to illustrate the growth mechanism. The epitaxial layer was of different composition from the core, as confirmed by high-resolution transmission electron microscopy, selectedarea electron diffraction and powder X-ray diffraction characterizations. The concave structures exhibited high catalytic activity towards methanol oxidation. The mass-normalized catalytic activity of the concave products was ~3 times that of pure Pt nanoparticles synthesized under similar conditions, and 13.6 times that of commercial Pt/C. X-ray photoelectron spectroscopy characterization indicated that the binding energy of the concave structures shifted to lower energy, relative to the pure Pt. The modified electronic structure by introducing Ni was thought to be responsible for the enhanced catalytic activity.



Key wordsOvergrowth      Quasi-concave      Pt-Ni      Methanol oxidation reaction      Electrocatalysis     
Received: 03 December 2013      Published: 22 January 2014
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173015) and National Key Basic Research Program of China (973) (2010CB934700).

Corresponding Authors: ZHANG Dong-Feng, GUO Lin     E-mail: dfzhang@buaa.edu.cn;guolin@buaa.edu.cn
Cite this article:

WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation. Acta Phys. Chim. Sin., 2014, 30(4): 708-714.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201401222     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I4/708

(1) Zhang, H.; Jin, M. S.; Xia, Y. N. Chem. Soc. Rev. 2012, 41, 8035. doi: 10.1039/c2cs35173k
(2) Peng, Z. M.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010
(3) Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.
(4) Debe1, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
(5) Gu, J.; Zhang, Y. W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050. doi: 10.1039/c2cs35184f
(6) Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P.; Tsang, S. C. ACS Nano. 2008, 2, 2547. doi: 10.1021/nn800400u
(7) Zhou, X. W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文,甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031
(8) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 20, 436.] doi: 10.3866/PKU.WHXB20040423
(9) Nøskov, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937. doi: 10.1073/pnas.1006652108
(10) Kelly, T. G.; Chen, J. G.; Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j
(11) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater. 2008, 7, 333. doi: 10.1038/nmat2156
(12) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418. doi: 10.1021/ja101108w
(13) Zhang, L. J.; Xia, D. G.; Wang, Z. Y.; Yuan, R.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 287. [张丽娟, 夏定国, 王振尧, 袁嵘, 吴自玉. 物理化学学报, 2005, 21, 287.] doi: 10.3866/PKU.WHXB20050312
(14) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
(15) Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang,Y. Y.; Jiang, Z.;Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133, 1978 doi: 10.1021/ja109483a
(16) Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p
(17) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z
(18) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y
(19) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755
(20) Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.v25.21
(21) Li, J. H.; Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Yang, S. H. J. Am. Chem. Soc. 2009, 131, 2959. doi: 10.1021/ja808784s
(22) Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405. doi: 10.1021/nl100222k
(23) Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e
(24) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 132, 268. doi: 10.1021/ja906954f
(25) Xia, X.; Zeng, J.; Mcdearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542. doi: 10.1002/anie.201105200
(26) Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Nano Res. 2011, 4, 612. doi: 10.1007/s12274-011-0117-x
(27) Wu, H. L.; Chen, C. H.; Huang, M. H. Chem. Mater. 2009, 21, 110. doi: 10.1021/cm802257e
(28) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409
(29) Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 7850. doi: 10.1002/anie.v50.34
(30) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688
(31) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 2773. doi: 10.1002/anie.201007859
(32) Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J. E.; Yu, T. K.; Yang, D. R.; Xia, Y. Nano Lett. 2011, 11, 898. doi: 10.1021/nl104347j
(33) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y. Angew. Chem. Int. Edit. 2010, 49, 5296. doi: 10.1002/anie.v49:31
(34) Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555. doi: 10.1039/b307040a
(35) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
(36) Zhang, H.; Jin, M. S.; Xia, Y. N. Angew. Chem. Int. Edit. 2012, 51, 7656. doi: 10.1002/anie.201201557
(37) Nigg, H. L.; Ford, L. P.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 3064.
(38) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 2581.
(39) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun. G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755
(40) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B. 2003, 107, 24.
(41) Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. J. Mater. Chem. 2011, 21, 1925. doi: 10.1039/c0jm02563a
(42) Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j

[1] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[2] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[3] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(1): 9-17.
[4] JIN Huan, WANG Juan, JI Yun, CHEN Mei-Mei, ZHANG Yi, WANG Qi, CONG Yan-Qing. Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation[J]. Acta Phys. Chim. Sin., 2015, 31(5): 955-964.
[5] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[6] PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1778-1786.
[7] ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua. Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1297-1304.
[8] WANG Sen-Lin, WANG Li-Pin, ZHANG Zhen-Hong. Preparation and Oxygen Evolution Reaction Performance of Ni/NiCo2O4 Electrode[J]. Acta Phys. Chim. Sin., 2013, 29(05): 981-988.
[9] CAO Jian-Yu, TANG Jia-Li, SONG Ling-Zheng, XU Juan, WANG Wen-Chang, Chen Zhi-Dong. Functionalization of Activated Carbon with EDTA and Its Effect on Electrocatalytic Performance of Carbon Supported Pd Catalysts[J]. Acta Phys. Chim. Sin., 2013, 29(01): 144-150.
[10] JIN Rong-Rong, LI Li-Fang, XU Xue-Feng, LIAN Ying-Hui, ZHAO Fan. Layered Double Hydroxide Supported Palladium Nanoparticles for Electrocatalytic Oxidation of Hydrazine[J]. Acta Phys. Chim. Sin., 2012, 28(08): 1929-1935.
[11] CONG Yan-Qing, LI Zhe, WANG Qi, ZHANG Yi, XU Qian, FU Fang-Xia. Enhanced Photoeletrocatalytic Activity of TiO2 Nanotube Arrays Modified with Simple Transition Metal Oxides (Fe2O3, CuO, NiO)[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1489-1496.
[12] SUN Ya-Ping, FAN Xin-Zhuang, LU Yong-Hong, XU Hai-Bo. Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution[J]. Acta Phys. Chim. Sin., 2012, 28(03): 603-608.
[13] RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun. Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2011, 27(10): 2373-2378.
[14] LI Yun-Xia, WEI Zi-Dong, ZHAO Qiao-Ling, DING Wei, ZHANG Qian, CHEN Si-Guo. Preparation of Pt/Graphene Catalyst and Its Catalytic Performance for Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2011, 27(04): 858-862.
[15] LAO Guo-Hong, SHAO Hai-Bo, FAN Yu-Qian, WANG Jian-Ming, ZHANG Jian-Qing, CAO Chu-Nan. Catalytic Oxidation of Sulfide Ion over a Spherular-Co3O4 Electrode[J]. Acta Phys. Chim. Sin., 2011, 27(03): 627-632.