Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 753-760    DOI: 10.3866/PKU.WHXB201401241
Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oligomer of Acrylonitrile
CHAI Xiao-Yan1,2, ZHU Cai-Zhen2, HE Chuan-Xin2, ZHANG Guang-Zhao1, LIU Jian-Hong2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China;
2 Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
Download:   PDF(1036KB) Export: BibTeX | EndNote (RIS)      


The strength of industrial carbon fibers (CFs) is far lower than their theoretical strength because of defects in the microstructure of carbon fibers and these are the main restrictions in improving their performance. The most effective way to improve the strength of CFs is to reduce the amount of these defects. We thus report a novel method using a liquid oligomer of acrylonitrile (LAN) to modify the defects. Briefly, Polyacrylonitrile (PAN)-based CFs T300 were infused into LAN, and subsequently oxidized in air and carbonized in nitrogen. Their tensile strength increased by 25%. Two-dimensional small angle X-ray scattering (SAXS) was used to characterize the variation in length of the microvoids (L), the chord length of cross section lp, the orientation angle (Beq), and the relative volume (Vrel). The results show that the length, orientation, angle and relative volume of the microvoids were much lower and the tensile property improved. The improvement in the tensile property comes from the modification of defects in CFs T300 by LAN. The BET method and scanning electron microscopy (SEM) were used to characterize the specific surface area and the morphology of T300 before and after LAN treatment. The results show that after the treatment of LAN the specific surface area decreased and the amount of surface defects also decreased.We further prove that the liquid oligomer of acrylonitrile can modify the defects in CFs. X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition of LAN-treated CF surfaces. The results show that the relative content of oxygen-containing functional groups on the surface of the CFs (C―OH, C=O, HO―C=O) increased significantly. The increase in oxygen-containing groups enhanced the surface polarity of the CFs, improving the interaction between the treated CFs and the epoxy resin, which acts as a carbon fiber substrate. Therefore, the mechanical properties of the CFs improved.

Key wordsCarbon fiber      Microvoids defects      Modification      Liquid oligomer of acrylonitrile      Small angle X-ray scattering     
Received: 14 October 2013      Published: 24 January 2014
MSC2000:  O641  

The project was supported by the National Key Basic Research Programs of China (973) (2011CB605603, 2011CB605605) and National Natural Science Foundation of China (21304059).

Corresponding Authors: LIU Jian-Hong     E-mail:
Cite this article:

CHAI Xiao-Yan, ZHU Cai-Zhen, HE Chuan-Xin, ZHANG Guang-Zhao, LIU Jian-Hong. Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oligomer of Acrylonitrile. Acta Phys. Chim. Sin., 2014, 30(4): 753-760.

URL:     OR

(1) He, F. Carbon Fiber and Graphite fiber; Chemical Industry Press: Beijing, 2010; pp 14-19. [贺福. 碳纤维及石墨纤维. 北京: 化学工业出版社, 2010: 14-19.]
(2) He, F.; Wang, R. E.; Zhao, J. G. New Chemical Materials 1999, 27, 6. [贺福, 王润娥, 赵建国. 化工新型材料, 1999, 27, 6.]
(3) Michael, D.C. International Fiber Journal 2007,4, 62.
(4) Zhang, Y.; Zhao, J. X.; Pang, D. New Chemical Materials. 2003, 31, 25. [张莹, 赵炯心, 潘鼎. 化工新型材料, 2003, 31, 25.]
(5) Jones, L.E; Thrower, P.A. Carbon 1991,29,251. doi: 10.1016/0008-6223(91)90076-U
(6) Wen, Y.; Lu Y.; Xiao H.; Qin X. Mater. Des. 2012,36,728. doi: 10.1016/j.matdes.2011.11.051
(7) Xiao, H.; Lu, Y. G; Wang, M. H. Carbon 2013,50,427.
(8) Badawy, S. M.; Dessouki, A. M. J. Phys. Chem. B 2003,107,11273. doi: 10.1021/jp034603j
(9) Xu, Z.; Huang, Y.; Min, C.; Chen, L. Radiat. Phys. Chem. 2010,79, 839. doi: 10.1016/j.radphyschem.2010.03.002
(10) Sung, M. G.; Sassa, K.; Tagawa, T.; Miyata, T.; Ogawa, H.; Doyama, M.; Yamada, S.; Asai, S. Carbon 2002, 40, 2013. doi: 10.1016/S0008-6223(02)00059-3
(11) Sung, M. G.; Kawabata, Y. Mater. Sci. Eng. A. 2008, 88, 247.
(12) Krishnomurti, P. J. Chem. Phys. 1930, 5, 473.
(13) Warren, B. E. J. Chem. Phys. 1934, 2, 551. doi: 10.1063/1.1749528
(14) Perret, R.; Ruland, W. J. Appl. Cryst. 1968, 1, 308. doi: 10.1107/S0021889868005558
(15) Perret, R.; Ruland, W. J. Appl. Cryst. 1969, 2, 209. doi: 10.1107/S0021889869006996
(16) Shioya, M.; Kobayashi, H.; Tanaka, T. Compos. Sci. Technol. 2007, 67,3209. doi: 10.1016/j.compscitech.2007.04.005
(17) Shioya, M.; Kawazoe, T.; Okazaki, R. Macromolecules 2008, 41,4758. doi: 10.1021/ma7027616
(18) Perret, R.; Ruland, W. J. Appl. Cryst. 1970, 3, 26.
(19) Zhu, C.Z.; Liu, X. F.; Yu, X.; Zhao, N.; Liu, J. H.; Xu, J. Carbon 2012, 50, 235.
(20) Sauder, C.; Lamon, J.; Pailler. R. Carbon 2004, 42, 715. doi: 10.1016/j.carbon.2003.11.020
(21) Thunemann, A. F.; Ruland, W. Macromolecules 2000, 33, 184.
(22) Thunemann, A. F.; Ruland, W. Macromolecules 2000, 33, 2626. doi: 10.1021/ma991298k
(23) Liu, Z. Y.; Zheng, J. T.; Wang, M. Z.; Zhang, B. J. Acta Phys. -Chim. Sin. 2001, 17,594. [刘振宇, 郑经堂, 王茂章, 张碧江. 物理化学学报, 2001, 17,594.] doi: 10.3866/PKU.WHXB20010704
(24) Lee , Y. S,; Lee, B.K. Carbon 2002, 40, 2461. doi: 10.1016/S0008-6223(02)00152-5
(25) Liu, J.; Tian, Y. L.; Chen, Y. J.; Liang, J. Y.; Zhang, L. F.; Fong, H. Mater. Chem. Phys. 2010,122, 548. doi: 10.1016/j.matchemphys.2010.03.045

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[3] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1324-1337.
[4] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[5] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[6] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[7] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[8] LI Wan-Fei, LIU Mei-Nan, WANG Jian, ZHANG Yue-Gang. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon[J]. Acta Phys. Chim. Sin., 2017, 33(1): 165-182.
[9] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2045-2051.
[10] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1604-1622.
[11] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Sin., 2016, 32(3): 691-700.
[12] WANG Yin, SUN Feng-Ling, ZHANG Xiao-Dong, TAO Hong, YANG Yi-Qiong. Microwave-Assisted Synthesis of Esterified Bacterial Celluloses to Effectively Remove Pb(II)[J]. Acta Phys. Chim. Sin., 2016, 32(3): 753-762.
[13] JIANG Jun-Hui, QIAN Meng-Dan, XUE Ji-Long, XIA Sheng-Jie, NI Zhe-Ming, SHAO Meng-Meng. Comparison of Properties of In-Au(111) and Ir-Au(111) Alloy Surfaces, and Their Adsorption to Crotonaldehyde[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2932-2940.
[14] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.
[15] ZHAO Zhen-Chao, ZHANG Wei-Ping. Two-Dimensional Layered Zeolite Precursors: Syntheses, Modifications and Catalytic Applications[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2475-2487.