Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 662-668    DOI: 10.3866/PKU.WHXB201401242
ELECTROCHEMISTRY AND NEW ENERGY     
Di-n-alkylphosphinic Acid with a Long Alkyl Chain as a Coadsorbent for Modifying TiO2 Photoanodes
LI Jing-Zhe1, KONG Fan-Tai1, WU Guo-Hua1, CHEN Wang-Chao1, HUANG Yang1, FANG Xia-Qin1, DAI Song-Yuan1,2
1 Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China;
2 State Key Laboratory of Alternate Electrical Power Sywtem with Renewable Energy Sources, North China Electric Power University, Beijing 102206, P. R. China
Download:   PDF(763KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The modification of a TiO2/dye/electrolyte interface can effectively improve the performance of dyesensitized solar cells (DSCs). A variety of methods has been reported for the modification of this interface, among which the introduction of a small organic molecule co-adsorbed with the dye on the surface of TiO2, which is simple and effective. In this paper, di-n-dodecylphosphinic acid (DDdPA) was synthesized and used as a coadsorbent in a Z907 based dye-sensitized solar cell. Its good adsorption property on the surface of TiO2 film containing Z907 was confirmed by Fourier transform infrared (FT-IR) spectroscopy. The dynamic processes of electron transport and recombination were investigated by electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS). Compared with the widely used bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP) coadsorbent, the DSC based on DDdPA is more effective in reducing electron recombination as shown by the EIS measurement, and this is mainly owed to the longer alkyl chain and the more pronounced steric hindrance effects. With an optimized concentration ratio of Z907 to DDdPA of 2:1, the charge transfer resistance (Rct) is larger than that of the device with only Z907 and an optimized Z907-to-DINHOP ratio of 1:1. IMPS/IMVS measurements indicate that the introduction of DDdPA effectively enhances the electronic lifetime and leads to a negative shift of about 30 mV for the conduction band edge. With the optimized DDdPA concentration, the open-circuit photovoltage (Voc) improved by 47 mV, and the power conversion efficiency of the DSC improved by 10%.



Key wordsDye-sensitized solar cell      Coadsorbent      Interface modification      Electron recombination      Phosphinic acid     
Received: 14 November 2013      Published: 24 January 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (2011CBA00700), National Natural Science Foundation of China (21003130, 61204075), External Cooperation Program of the Chinese Academy of Sciences (GJHZ1220), and Function and Application Development of Equipment of the Chinese Academy of Sciences (yg2012067).

Corresponding Authors: KONG Fan-Tai, DAI Song-Yuan     E-mail: kongfantai@163.com;sydai@ipp.ac.cn
Cite this article:

LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, CHEN Wang-Chao, HUANG Yang, FANG Xia-Qin, DAI Song-Yuan. Di-n-alkylphosphinic Acid with a Long Alkyl Chain as a Coadsorbent for Modifying TiO2 Photoanodes. Acta Phys. Chim. Sin., 2014, 30(4): 662-668.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201401242     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I4/662

(1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.G.; Yeh, C.Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
(2) Kong, F. T; Dai, S. Y. Prog.Chem. 2006, 18, 1409. [孔凡太, 戴松元. 化学进展, 2006, 18, 1409.]
(3) Wang, M.; Bai, S.; Chen, A.; Duan, Y.; Liu, Q.; Li, D.; Lin, Y. Electrochim. Acta 2012, 77, 54. doi: 10.1016/j.electacta.2012.05.050
(4) Li, W. X.; Hu, L. H; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 2367. [李文欣, 胡林华, 戴松元. 物理化学学报, 2011, 27, 2367.] doi: 10.3866/PKU.WHXB20111011
(5) Wang, Z. S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272. doi: 10.1021/la050134w
(6) Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sin. 2013, 71,777. [寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元. 化学学报, 2013, 71,777.] doi: 10.6023/A13010022
(7) Kay, A.; Grätzel, M. J. Phys. Chem. 1993, 97, 6272 doi: 10.1021/j100125a029
(8) Xu, W.; Pei, J.; Shi, J. F.; Peng, S. J.; Chen, J. J. Power Sources 2008, 183, 792. doi: 10.1016/j.jpowsour.2008.05.025
(9) Chen, H.; Huang, H.; Huang, X.; Clifrord, J. N.; Forneli, A.; Palomares, E.; Zheng, X.; Zheng, L.; Wang, X.; Shen, P.; Zhao, B.; Tan, S. J. Phys. Chem. C 2010, 114, 3280.
(10) Amao, Y.; Komori, T. Langmuir 2003, 19, 8872. doi: 10.1021/la035001u
(11) Kwon, Y. S.; Song, I. Y.; Lim, J.; Park, S. H.; Siva, A.; Park, Y. C.; Jang, H. M.; Park, T. RSC Adv. 2012, 2, 3467. doi: 10.1039/c2ra01251k
(12) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101.
(13) Magne, C.; Urien, M.; Ciofini, I.; Tugsuz, T.; Pauporte, T. Rsc Advances 2012, 2, 11836 doi: 10.1039/c2ra22121g
(14) Li, J.; Kong, F. T.; Zhang, C. N.;Liu, W. Q.; Dai, S. Y. Acta Chim. Sin. 2010, 68, 1357. [李洁, 孔凡太, 张昌能, 刘伟庆, 戴松元.化学学报, 2010, 68, 1357.]
(15) Allegrucci, A.; Lewcenko, N. A.; Mozer, A. J.; Dennany, L.; Wagner, P.; Officer, D. L.; Sunahara, K.; Mori, S.; Spiccia, L. Energy Environ. Sci. 2009, 2, 1069. doi: 10.1039/b909709k
(16) Wang, M.; Li, X.; Lin, H.; Pechy, P.; Zakeeruddin, S. M.; Grätzel, M. Dalton Trans .2009, 45, 10015.
(17) Shen, H.; Lin, H.; Liu, Y.; Li, X.; Zhang, J.; Wang, N.; Li, J. Electrochim. Acta 2011, 56, 2092. doi: 10.1016/j.electacta.2010.11.087
(18) Mutin, P. H.; Guerrero, G.; Vioux, A. J. Mater. Chem. 2005, 15, 3761. doi: 10.1039/b505422b
(19) Li, J.; Kong, F. T.;Wu, G. H.; Zhang, C. N.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 881. [李洁, 孔凡太, 武国华, 张昌能, 戴松元. 物理化学学报, 2011, 27, 881.] doi: 10.3866/PKU.WHXB20110413
(20) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M. Nature Mater. 2003, 2, 402. doi: 10.1038/nmat904
(21) Williams, R. H.; Hamilion, L. A. J. Am. Chem. Soc. 1952, 74, 5418. doi: 10.1021/ja01141a058
(22) Hu, L.; Dai, S.; Weng, J.; Xiao, S.; Sui, Y.; Huang, Y.; Chen, S.; Kong, F.; Pan, X.; Liang, L.; Wang, K. J. Phys. Chem. B 2007, 111, 358. doi: 10.1021/jp065541a
(23) Liu, W.; Hu, L.; Dai, S.; Guo, L.; Jiang, N.; Kou, D. Electrochim. Acta 2010, 55, 2338. doi: 10.1016/j.electacta.2009.11.065
(24) Gawalt, E. S.; Lu, G.; Bernasek, S. L.; Schwartz, J. Langmuir 1999, 15, 8929. doi: 10.1021/la990906m
(25) Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69. doi: 10.1021/nl062000o
(26) Kwon, Y. S.; Song, I. Y.; Lim, J.; Park, S. H.; Siva, A.; Park, Y. C.; Jang, H. M.; Park, T. Rsc Advances 2012, 2, 3467. doi: 10.1039/c2ra01251k
(27) Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949. doi: 10.1021/jp993220b
(28) Schlichthorl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126
(29) Alarcon, H.; Boschloo, G.; Mendoza, P.; Solis, J. L.; Hagfeldt, A. J. Phys. Chem. B 2005, 109, 18483. doi: 10.1021/jp0513521
(30) Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; van Roosmalen, J. A. M. J. Phys. Chem. B 2006, 110, 19191. doi: 10.1021/jp061346k
(31) Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B 2005, 109, 23183. doi: 10.1021/jp0538666
(32) Lim, J.; Kwon, Y. S.; Park, T. Chem. Commun. 2011, 47, 4147. doi: 10.1039/c0cc04999a
(33) Song, B. J.; Song, H. M.; Choi, I. T.; Kim, S. K.; Seo, K. D.; Kang, M. S.; Lee, M. J.; Cho, D. W.; Ju, M. J.; Kim, H. K. Chem. Eur. J.2011, 17, 11115. doi: 10.1002/chem.201100813
(34) Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. Energy Environ. Sci. 2012, 5, 6057. doi: 10.1039/c2ee03418b

[1] WENG Xiao-Long, WANG Yan, JIA Chun-Yang, WAN Zhong-Quan, CHEN Xi-Ming, YAO Xiao-Jun. Theoretical Investigation of Novel Tetrathiafulvalene- Triphenylamine Sensitizers[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1990-1998.
[2] HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1504-1512.
[3] TAO Li, HUO Zhi-Peng, WANG Lu, DAI Song-Yuan. Quasi-Solid-State Dye-Sensitized Solar Cell Fabricated fromIonic Gel Electrolyte with High Gel-to-Solution Transition Temperature[J]. Acta Phys. Chim. Sin., 2015, 31(1): 121-127.
[4] SU Jia, LU Shan, WANG Sha-Sha, ZHANG Xue-Hua, FU Yu-Bin, HE Tao. Influence of pH Values on the Structure and Performance of a Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1487-1494.
[5] GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang. Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2014, 30(3): 446-452.
[6] CHEN Xi-Ming, JIA Chun-Yang, WAN Zhong-Quan, YAO Xiao-Jun. Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2014, 30(2): 273-280.
[7] ZHU Lei, QIANG Ying-Huai, ZHAO Yu-Long, GU Xiu-Quan, SONG Duan-Ming, SONG Chang-Bin. Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2339-2344.
[8] LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(09): 1851-1864.
[9] WANG Hai, XU Xue-Qing, SHI Ji-Fu, XU Gang. Application of Ionic Liquids with Carboxyl and Aromatic Ring Conjugated Anions in Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(03): 525-532.
[10] WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao. Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(03): 516-524.
[11] ZHAN Wei-Shen, LI Rui, PAN Shi, GUO Ying-Nan, ZHANG Yi. Extension of Conjugate π Bridge in Dye Molecules for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(02): 255-262.
[12] GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li. A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2013, 29(01): 82-88.
[13] DAI Yu-Hua, LI Xiao-Jie, FANG Yan-Yan, SHI Qiu-Fei, LIN Yuan, YANG Ming-Shan. Influence of Polymer Gel Electrolyte on the Performance of Dye-Sensitized Solar Cells Analyzed by Electrochemical Impedance Spectroscopy[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2669-2675.
[14] JIANG Li-Lin, LU Xi-Yin, SONG Yun-Fei, LIU Wei-Long, YANG Yan-Qiang. Effects of Excited State Vibrational Coherence on Photo-Induced Electron Transfer Rates in Dye-Sensitized Nanocrystalline TiO2[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2589-2596.
[15] LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian. Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2057-2064.