Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 669-676    DOI: 10.3866/PKU.WHXB201402102
Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries
ZHU Zhi1, QI Lu1, LI Wei2,3, LIAO Xi-Ying3
1 College of Chemistry and Molecular Engineering, Peking University, Beijing 100190, P. R. China;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
3 SYN Chemicals & Technology (Beijing) Co. Ltd., Beijing 100094, P. R. China
Download:   PDF(2951KB) Export: BibTeX | EndNote (RIS)      


This research developed a novel composite co-precipitation method to prepare high performance LiNi0.5Mn1.5O4 based on a traditional solid-state method. Ammonium oxalate/ammonium carbonate was used as a composite precipitator to deposit Ni/Mn ions. Combined with a facile hydrothermal treatment, stoichiometric LiNi0.5Mn1.5O4 was obtained with a pure spinel structure and spherical hierarchical morphology. Electrochemical measurements indicate that the as-prepared LiNi0.5Mn1.5O4 delivers a high capacity of 141.4 mAh·g-1 and after 200 cycles under 0.3C, 1C, and 3C, the materials retained their capacities up to 96.3%, 94.4%, and 91.1%, respectively. Additionally, the capacity upon exposure to a low voltage of 4.0 V was efficiently eliminated by heat treatment and by a particular cooling process. Furthermore, the LiNi0.5Mn1.5O4 materials with high energy and high power performances of 648.6 mWh·g-1 and 7000mW·g-1 were obtained because of different cation ordering.

Key wordsLithium ion battery      Spinel lithium nickel magnesium oxide      High energy/high power      Co-precipitation method      Spherical hierarchical morphology     
Received: 19 November 2013      Published: 10 February 2014
MSC2000:  O646  
Corresponding Authors: QI Lu     E-mail:
Cite this article:

ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries. Acta Phys. Chim. Sin., 2014, 30(4): 669-676.

URL:     OR

(1) Qi, L. Lithium Ion Secondary Battery for Electronica Vehicle, 2nd ed.; Science Press: Beijing, 2013; pp 49. [其鲁. 电动汽车用锂离子二次电池(第二版). 北京: 科学出版社, 2013: 49.]
(2) Terada, Y.;Yasaka, K.; Nishikawa, F.; Konishi, T.;Yoshio, M.; Nakai, I. J. Solid-State Chem. 2001, 156, 286. doi: 10.1006/jssc.2000.8990
(3) Song, M. Y.; Ahn, D. S. Solid State Ionics 1998, 112 (1-2), 21. doi: 10.1016/S0167-2738(98)00218-5
(4) Kim, J. H.; Myung, S. T.; Sun, Y. K. Electrochim. Acta 2004, 49, 219. doi: 10.1016/j.electacta.2003.07.003
(5) Santhanam, R.; Rambabu, B. J. Power Sources 2010, 195, 5442. doi: 10.1016/j.jpowsour.2010.03.067
(6) Hagh, N. M.; Amatucci, G. G. J. Power Sources 2010, 195, 5005.
(7) Liu, G. Q.;Wang, Y. J.; Qi, L.; Li,W.; Chen, H. Electrochim. Acta 2005, 50 (9), 1965.
(8) Hwang, B. J.;Wu, Y.W.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R. J. Power Sources 2009, 193, 828. doi: 10.1016/j.jpowsour.2009.04.012
(9) Lee, Y. S.; Sun, Y. K.; Ota, S.; Miyashita, T.; Yoshio, M. Electrochem. Commun. 2002, 4, 989. doi: 10.1016/S1388-2481(02)00491-5
(10) Fan. Y.;Wang, J.; Ye, X.; Zhang, J. Mater. Chem. Phys. 2007, 103, 19. doi: 10.1016/j.matchemphys.2006.10.006
(11) Sun, Y. K.; Oh, S.W.; Yoon, C. S.; Bang, H. J.; Prakash, J. J. Power Sources 2006, 161, 19. doi: 10.1016/j.jpowsour.2006.03.085
(12) Fang, X.; Ding, N.; Feng, X. Y.; Lu, Y.; Chen, C. H. Electrochim. Acta 2009, 54, 7471. doi: 10.1016/j.electacta.2009.07.084
(13) Chen, Z.; Zhu, H.; Ji, S.; Linkov, V.; Zhang, J.; Zhu,W. J. Power Sources 2009, 189, 507. doi: 10.1016/j.jpowsour.2008.11.001
(14) Fang, H. S.;Wang, Z. X.; Li, X. H.; Guo, H. J.; Peng,W. J. J. Power Sources 2006, 153, 174. doi: 10.1016/j.jpowsour.2005.03.179
(15) Takahashi, K.; Saitoh, M.; Sano, M.; Fujita, M.; Kifune, K. J. Electrochem. Soc. 2004, 151 (1), A173.
(16) Wu, S.; Kim, S. J. Power Sources 2002, 109, 53. doi: 10.1016/S0378-7753(02)00034-4
(17) Park, S. B.; Eom,W. S.; Cho,W. I.; Jang, H. J. Power Sources 2006, 159, 679. doi: 10.1016/j.jpowsour.2005.10.099
(18) Zhu, Z.; Yan, H.; Zhang, D.; Li,W.; Qi, L. J. Power Sources 2013, 224, 13. doi: 10.1016/j.jpowsour.2012.09.043
(19) Zhu, Z.; Qi, L; Zhang, D.; Yu, H. Y. Electrochim. Acta 2014, 115, 290. doi: 10.1016/j.electacta.2013.10.167
(20) Zhu, Z.; Zhang, D.; Yan, H.; Li,W.; Qi, L. J. Mater. Chem. A 2013, 1, 5492. doi: 10.1039/c3ta10980a

[1] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[2] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[3] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[4] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[5] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[6] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[7] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1351-1358.
[8] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1667-1673.
[9] YAN Jing-Sen, WANG Hai-Yan, ZHANG Jing-Ru, XU Hui-Juan. Effect of TiO2-Al2O3 Support Preparation Technique on Hydrodenitrogenation of Ni2P/TiO2-Al2O3 Catalysts[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1309-1317.
[10] YU Zai-Lu, XIE Peng-Fei, TANG Xing-Fu, YUE Ying-Hong, HUA Wei-Ming, GAO Zi. Selective Catalytic Reduction of NO with NH3 over MnOx-CeO2-WO3-ZrO2:Effect of Calcination Temperature[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1175-1179.
[11] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(12): 2283-2290.
[12] ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Phys. Chim. Sin., 2013, 29(09): 1989-1997.
[13] LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Phys. Chim. Sin., 2013, 29(05): 966-972.
[14] YUAN Zhi-Hong, MA Jun, CHEN Xing, LIU Kai-Yu. P123-Assisted Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/C Cathode[J]. Acta Phys. Chim. Sin., 2012, 28(12): 2898-2904.
[15] LI Jie-Bin, XU You-Long, DU Xian-Feng, SUN Xiao-Fei, XIONG Li-Long. Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Materials[J]. Acta Phys. Chim. Sin., 2012, 28(08): 1899-1905.