Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 789-796    DOI: 10.3866/PKU.WHXB201402123
Preparation of Polyethylenimine-Functionalized Silica Nanotubes and Their Application for CO2 Adsorption
YAO Man-Li, DONG Yan-Yan, XIE Jing, JIA Ai-Ping, XIE Guan-Qun, HU Geng-Shen, LUO Meng-Fei
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China
Download:   PDF(856KB) Export: BibTeX | EndNote (RIS)      


Mesoporous ethane-silica nanotubes (E-SNTs) were synthesized using P123 as a template and 1,2-bis(trimethoxysilyl)ethane (BTME) as a silica source. E-SNTs were modified with polyethylenimine (PEI) as sorbents for CO2 adsorption. These new composite sorbents were characterized by transmission electron microscopy (TEM), nitrogen adsorption/desorption, Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA). We found that 75 ℃ is the optimal temperature for CO2 adsorption. E-SNTs with a 50% (w) PEI loading (E-SNTs-50) exhibited a higher CO2 adsorption capacity (3.32 mmol·g-1) than the other materials. The E-SNTs-based sorbents show better CO2 capture performance than the SBA-15-based sorbents. Additionally, CO2 uptake was further enhanced to 3.75 mmol·g-1 in the presence of moisture. Cyclic CO2 adsorption-desorption test results indicated that the composite sorbents are stable and can be regenerated.

Key wordsMesoporoussilica nanotube      Polyethylenimine      Adsorption      CO2 capture     
Received: 30 December 2013      Published: 12 February 2014
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21203167).

Corresponding Authors: HU Geng-Shen     E-mail:
Cite this article:

YAO Man-Li, DONG Yan-Yan, XIE Jing, JIA Ai-Ping, XIE Guan-Qun, HU Geng-Shen, LUO Meng-Fei. Preparation of Polyethylenimine-Functionalized Silica Nanotubes and Their Application for CO2 Adsorption. Acta Phys. Chim. Sin., 2014, 30(4): 789-796.

URL:     OR

(1) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438. doi: 10.1021/ie200686q
(2) Liu, L.; Deng, Q. F.; Hou, X. X.; Yuan, Z. Y. J. Mater. Chem. 2012, 22, 15540.
(3) Kamarudin, K. S. N.; Alias, N. Fuel Process. Technol. 2013, 106, 332. doi: 10.1016/j.fuproc.2012.08.017
(4) Gupta, M.; da Silva, E. F.; Hartono, A.; Svendsen, H. F. J. Phys. Chem. B 2013, 117, 9457. doi: 10.1021/jp404356e
(5) Zoannou, K. S.; Sapsford, D. J.; Griffiths, A. J. International Journal of Greenhouse Gas Control 2013, 17, 423. doi: 10.1016/j.ijggc.2013.05.026
(6) Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Energy 2013, 55, 676. doi: 10.1016/
(7) Sema, T.; Naami, A.; Fu, K. Y.; Chen, G. Y.; Liang, Z. W.; Idem, R.; Tontiwachwuthikul, P. Chem. Eng. Sci. 2013, 100, 183. doi: 10.1016/j.ces.2012.12.030
(8) Wang, X. X.; Schwartz, V.; Clark, J. C.; Ma, X. L.; Overbury, S. H.; Xu, X. C.; Song, C. S. J. Phys. Chem. C 2009, 113, 7260. doi: 10.1021/jp809946y
(9) Veawab, A.; Tontiwachwuthikul;, P.; Chakma., A. Ind. Eng. Chem. Res. 1999, 38, 3917. doi: 10.1021/ie9901630
(10) Xu, X.; Song, C.; Wincek, R.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Fuel Chemistry Division Preprints 2003, 48, 162.
(11) Wang, X. X.; Ma, X. L.; Song, C. S.; Locke, D. R.; Siefert, S.; Winans, R. E.; Mollmer, J.; Lange, M.; Moller, A.; Glaser, R. Microporous Mesoporous Mater. 2013, 169, 103. doi: 10.1016/j.micromeso.2012.09.023
(12) Choi, D. H.; Ryoo, R. J. Mater. Chem. 2010, 20, 5544. doi: 10.1039/c0jm00671h
(13) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. doi: 10.1021/ie900837t
(14) Jo, C.; Kim, K.; Ryoo, R. Microporous Mesoporous Mater. 2009, 124, 45. doi: 10.1016/j.micromeso.2009.04.037
(15) Liu, L.; Deng, Q. F.; Ma, T. Y.; Lin, X. Z.; Hou, X. X.; Liu, Y. P.; Yuan, Z. Y. J. Mater. Chem. 2011, 21, 16001. doi: 10.1039/c1jm12887f
(16) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Energy Fuels 2002, 16, 1463. doi: 10.1021/ef020058u
(17) Ma, X. L.; Wang, X. X.; Song, C. S. J. Am. Chem. Soc. 2009, 131, 5777. doi: 10.1021/ja8074105
(18) Liu, X.; Li, X. B.; Guan, Z. H.; Liu, J.; Zhao, J.; Yang, Y.; Yang, Q. H. Chem. Commun. 2011, 47, 8073. doi: 10.1039/c1cc12136g
(19) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279,  doi: 10.3878/j.issn.1006-9895.2013.13159
(20) Feng, X. X.; Hu, G. S.; Hu, X.; Xie, G. Q.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. Ind. Eng. Chem. Res. 2013, 52, 4221. 10.1021/ie301946p
(21) Feng, X.X; Xie, J.; Hu, G. S.; Jia, A. P.; Xie, G. Q.; Luo, M.F. Acta Phys. -Chim. Sin. 2013, 29, 1266. [冯星星, 谢菁, 胡庚申, 贾爱平, 谢冠群, 罗孟飞. 物理化学学报. 2013, 29, 1266.] doi: 10.3866/PKU.WHXB201304091
(22) Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W. Microporous Mesoporous Mater. 2003, 62, 29. 10.1016/S1387-1811(03)00388-3
(23) Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mater. 2008, 113, 31. doi: 10.1016/j.micromeso.2007.10.049
(24) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250. doi: 10.1021/ef0002391

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[13] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[14] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.
[15] JIAN Yuan, MU Wan-Jun, LIU Ning, PENG Shu-Ming. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2052-2058.