Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (4): 781-788    DOI: 10.3866/PKU.WHXB201402191
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers
TANG Wei1, WANG Jing1, YAO Peng-Jun1,2, DU Hai-Ying1,3, SUN Yan-Hui1,3
1 School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China;
2 School of Educational Technology, Shenyang Normal University, Shenyang 110000, P. R. China;
3 College of Electromechanical & Information Engineering, Dalian Nationalities University, Dalian 116600, Liaoning Province, P. R. China
Download:   PDF(1132KB) Export: BibTeX | EndNote (RIS)      

Abstract  

SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ·2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ?2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced



Key wordsElectrospinning      Composite nanofiber      Gas sensor      Methanol      Heterojunction     
Received: 13 January 2014      Published: 19 February 2014
MSC2000:  O649  
  O641  
  O642  
Fund:  

The project was supported by the National Natural Science Foundation of China (61176068, 61131004, 61001054).

Corresponding Authors: WANG Jing     E-mail: wangjing@dlut.edu.cn
Cite this article:

TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers. Acta Phys. Chim. Sin., 2014, 30(4): 781-788.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201402191     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I4/781

(1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z
(2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701
(3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55
(4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932
(5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9
(6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6
(7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2.
(8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786
(9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a
(10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688
(11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040
(12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087
(13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281
(14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.]
(15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a
(16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647
(17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695.
(18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131.
(19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609
(20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553
(21) Guan, H.; Shao, C.; Chen, B.; Gong, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021
(22) Yang, X.; Shao, C.; Guan, H.; Li, X.; Gong, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035
(23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030
(24) Wang, Y.; Ramos, I.; Santiago-Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045
(25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091
(26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006
(27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508
(28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026
(29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210.
(30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038
(31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435
(32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
(33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
(34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
(35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
(38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; Gong, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
(41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
(42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.]
(46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
(33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
(34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
(35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
(38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; Gong, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
(41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
(42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.]
(46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983

 

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[6] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[7] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[8] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2532-2541.
[9] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[10] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[11] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[12] TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1087-1104.
[13] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[14] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[15] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.