Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (5): 923-931    DOI: 10.3866/PKU.WHXB201403051
Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation
WANG Guan-Nan1, CHEN Li-Min1,2, GUO Yuan-Yuan1, FU Ming-Li1, WU Jun-Liang1, HUANG Bi-Chun1,2, YE Dai-Qi1,2
1 Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, P. R. China;
2 College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
Download:   PDF(964KB) Export: BibTeX | EndNote (RIS)      


A series of Cu/ZrO2/CNTs-NH2 catalysts with various chromium dopings were prepared using a coprecipitation method for the synthesis of methanol by the hydrogenation of CO2. The impact of the addition of chromium on the catalytic performance of the Cu/ZrO2/CNTs-NH2 catalyst was investigated in a fixed-bed plug flow reactor. When the chromium loading was set to 1% of the total amount of Cu2+ and Zr4+, the methanol yield increased to a maximum of 7.78% (reaction conditions: 3.0 MPa, 260 ℃, V(H2):V(CO2):V(N2)=69:23:8 and gaseous hourly space velocity (GHSV)=3600 mL·h-1·g-1). The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption of H2 (H2-TPD), X-ray photoelectron spectroscopy (XPS), temperature- programmed desorption of CO2 (CO2-TPD), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of these analyses indicated that the introduction of chromium reduced the size of the Cu nanoparticles, enhanced the dispersion of the Cu species, inhibited the phase transformation and sintering of ZrO2, increased the specific surface area, enhanced the amount of CO2 adsorbed, and promoted the conversion of weakly adsorbed CO2 species to strongly adsorbed CO2 species. Taken together, these factors lead to a high methanol yield. However, when the chromium loading was greater than 1%, the amount Cu and Zr on the surface, as well as the size of the Cu nanoparticle reduced considerably, which led to a significant reduction in the adsorption of CO2 species. This effect also facilitated the formation of strongly adsorbed CO2 species, leading to lower methanol yields.

Key wordsCNTs-NH2      Chromium      Copper      Zirconia      Methanol synthesis      Carbon dioxide hydrogenation     
Received: 08 January 2014      Published: 05 March 2014
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21207039, 51108187, 0978103), Natural Science Foundation of Guangdong Province, China (S2011010000737), Specialized Research Fund for the Doctoral Program of Higher Education, China (20110172120017), and Scientific Research Foundation for Returned Scholars, Ministry of Education of China (2012).

Corresponding Authors: CHEN Li-Min, YE Dai-Qi     E-mail:;
Cite this article:

WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation. Acta Phys. Chim. Sin., 2014, 30(5): 923-931.

URL:     OR

(1) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009
(2) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s
(3) Olah, G. A.; Goeppert, A.; Prakash, G. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f
(4) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S. Acta Phys. -Chim. Sin. 2012, 28, 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28, 170.] doi: 10.3866/PKU.WHXB201228170
(5) Liang, X. L.; Dong, X.; Lin, G. D.; Zhang, H. B. Appl. Catal. B 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018
(6) Natesakhawat, S.; Lekse, J.W.; Baltrus, J. P.; Ohodnicki, P. R., Jr.; Howard, B. H.; Deng, X.; Matranga, C. ACS Catalysis 2012, 2, 1667. doi: 10.1021/cs300008g
(7) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Mol. Catal. A-Chem. 2011, 345, 60. doi: 10.1016/j.molcata.2011.05.019
(8) Tang, Q. L.; Hong, Q. J.; Liu, Z. P. J. Catal. 2009, 263, 114. doi: 10.1016/j.jcat.2009.01.017
(9) Keskitalo, T. J.; Niemela, M.; Krause, A. Langmuir 2007, 23, 7612. doi: 10.1021/la7009868
(10) Jung, K. T.; Bell, A. T. Catal. Lett. 2002, 80, 63. doi: 10.1023/A:1015326726898
(11) Kilo, M.; Weigel, J.; Wokaun, A.; Koeppel, R. A.; Stoeckli, A.; Baiker, A. J. Mol. Catal. A-Chem. 1997, 126, 169. doi: 10.1016/S1381-1169(97)00109-X
(12) Wang, D. S.; Tan, Y. S.; Han, Y. Z.; Noritatsu, T. Chin. J. Catal. 2008, 29, 63. [王东升, 谭猗生, 韩怡卓, 椿范立. 催化学报, 2008, 29, 63.]
(13) Wang, W. H.; Huang, B. C.; Wang, L. S.; Ye, D. Q. Surf. Coat. Tech. 2011, 205, 4896. doi: 10.1016/j.surfcoat.2011.04.100
(14) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
(15) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. ChemCatChem 2012, 4, 1960.
(16) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. Catal. Lett. 2012, 142, 975. doi: 10.1007/s10562-012-0850-0
(17) Chen, L. M.; Ma, D.; Bao, X. H. J. Phys. Chem. C 2007, 111, 2229.
(18) Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916
(19) Dong, X.; Liang, X. L.; Li, H. Y.; Lin, G. D.; Zhang, P.; Zhang, H. B. Catal. Today 2009, 147, 158. doi: 10.1016/j.cattod.2008.11.025
(20) Zhang, H. B.; Liang, X. L.; Dong, X.; Li, H. Y.; Lin, G. D. Catal. Sur. Asia 2009, 13, 41. doi: 10.1007/s10563-009-9066-8
(21) Sloczynski, J.; Grabowski, R.; Kozlowska, A.; Olszewski, P.; Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen. 2003, 249, 129. doi: 10.1016/S0926-860X(03)00191-1
(22) Pokrovski, K. A.; Rhodes, M. D.; Bell, A. T. J. Catal. 2005, 235, 368. doi: 10.1016/j.jcat.2005.09.002
(23) Lin, M. G.; Yang, C.; Wu, G. S.; Wei, W.; Li, W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591. [林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙予罕, 何鸣元. 催化学报, 2004, 25, 591.]
(24) Zhang, L. X.; Zhang, Y. C.; Chen, S. Y. Appl. Catal. A-Gen. 2012, 415, 118.
(25) Saito, M.; Murata, K. Catal. Sur. 2004, 8, 285. doi: 10.1007/s10563-004-9119-y
(26) Alwin, M.; Mathias, P.; Karl, W. Production of Oxygenated Organic Compounds. US Patent 15585591, 1925-10-27.
(27) Kim, D. H.; Cha, J. E. Catal. Lett. 2003, 86, 107. doi: 10.1023/A:1022671327794
(28) Hao, A. X.; Yu, Y.; Chen, H. B.; Mao, C. P.; Wei, S. X.; Yin, Y. S. Acta Phys. -Chim. Sin. 2013, 29, 2047. [郝爱香, 于杨, 陈海波, 毛春鹏, 魏士新, 殷玉圣. 物理化学学报, 2013, 29, 2047.] doi: 10.3866/PKU.WHXB201306211
(29) Esposito, S.; Turco, M.; Bagnasco, G.; Cammarano, C.; Pernice, P.; Aronne, A. Appl. Catal. A-Gen. 2010, 372, 48. doi: 10.1016/j.apcata.2009.10.006
(30) Chen, H. B.; Liao, D.W.; Yu, L. J.; Lin, Y. J.; Yi, J.; Zhang, H. B.; Tsai, K. R. Appl. Surf. Sci. 1999, 147, 85. doi: 10.1016/S0169-4332(99)00081-1
(31) Hoang, D. L.; Dittmar, A.; Radnik, J.; Brzezinka, K.W.; Witke, K. Appl. Catal. A-Gen. 2003, 239, 95. doi: 10.1016/S0926-860X(02)00375-7
(32) Jones, S. D.; Hagelin-Weaver, H. E. Appl. Catal. B-Environ. 2009, 90, 195. doi: 10.1016/j.apcatb.2009.03.013
(33) Avgouropoulos, G.; Ioannides. T.; Matralis, H. Appl. Catal. BEnviron. 2005, 56, 87. doi: 10.1016/j.apcatb.2004.07.017
(34) Avgouropoulos, G.; Ioannides, T. Appl. Catal. A-Gen. 2003, 244, 155. doi: 10.1016/S0926-860X(02)00558-6
(35) Xu, L.Y.; Wang, Q. X.; Liang, D. B.; Wang, X.; Lin, L.W.; Cui, W.; Xu, Y. D. Appl. Catal. A 1998, 173 , 19.
(36) Li, J. T.; Zhang, W. D.; Chen, M. K.; Ou, Z. T. Nat. Gas Chem. Ind. 1998, 23, 14. [李基涛, 张伟德, 陈明口, 区泽棠. 天然气化工, 1998, 23, 14.]
(37) Zhang, L. X. Investigation of Modification of Catalyst CuOZnO-Al2O3 for Methanol Synthesis from CO2 Catalytic Hydrogenation. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2012. [张鲁湘. CO2 催化加氢合成甲醇催化剂CuO-ZnO-Al2O3 改性的研究[D]. 大连: 大连理工大学, 2012.]
(38) Li, M. J.; Yao, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chin. J. Catal. 2003, 5, 861. [李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿. 催化学报, 2003, 5, 861.]
(39) Li, M. J.; Feng, Z. C.; Ying, P. L.; Xin, Q.; Li, C. Phys. Chem. Chem. Phys. 2003, 5, 5326. doi: 10.1039/b310284j

[1] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1699-1708.
[2] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. Chim. Sin., 2017, 33(5): 993-1000.
[3] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Sin., 2017, 33(2): 386-392.
[4] LI Yue, ZHANG Ting-Ting, WANG Juan, ZHU Zhen, JIA Bing, YU Jiang. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2084-2092.
[5] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1604-1622.
[6] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1795-1800.
[7] LI Zhan-Guo, ZHANG Yu-Ting, XIE Qiang, LI Heng-Li, SUN Li-Jing, SONG Xiao-Feng, WANG Li-Juan. NO2 Sensors Based on p-6P Heterogametic Induction Growth of Copper Phthalocyanine Thin Films[J]. Acta Phys. Chim. Sin., 2016, 32(4): 1005-1011.
[8] YU Liang, YU Fang-Yong, YUAN Li-Li, CAI Wei-Zi, LIU Jiang, YANG Cheng-Hao, LIU Mei-Lin. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(2): 503-509.
[9] ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. Chim. Sin., 2016, 32(1): 261-266.
[10] FAN Feng-Qi, MENG Ming, TIAN Ye, ZHENG Li-Rong, ZHANG Jing, HU Tian-Dou. Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1761-1770.
[11] CHENG Qing-Li, ZHANG Wei-Hua, TAO Bin. Investigation of the Electrochemical Corrosion of Copper under a Micrometric Electrolyte Droplet Using a Three-Electrode System[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1345-1350.
[12] HAN Yong, XU Qian, JU Huan-Xin, ZHU Jun-Fa. Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2151-2157.
[13] MA Yi-Ran, ZHOU Wei, CAO Wei, ZHENG Jin-Long, GUO Lin. Preparation of Hierarchical Ni@CuS Composites and the Application of the Enhanced Catalysis for 4-Nitrophenol Reduction[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1949-1955.
[14] CHEN Ai-Min, BO Ying-Ying, SHAO Chen-Yi, WANG Jing, HU Jun. Synthesis of Single-Crystalline Cu3B2O6/CuB2O4 and Their Photocatalytic Degradation of Methylene Blue under Visible-Light Irradiation[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1713-1719.
[15] JIN Qin, SUN Xiao-Ling, WANG Yan-Ni, WEI Tao, WANG Chao-Jie. Computational Study on the Coordinate Systems of Proline with Cu, Cu+ and Cu2+[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1247-1258.