Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (5): 987-993    DOI: 10.3866/PKU.WHXB201403112
PHOTOCHEMISTRY AND RADIATION CHEMISTRY     
Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths
YUAN Shu-Wei, LÜ Rong, YU An-Chi
Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
Download:   PDF(636KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The photoisomerization kinetics of IR125 and HDITCP in ionic liquids with different cation alkyl chain lengths were investigated by measuring their fluorescence lifetimes and quantum yields using steady-state absorption and fluorescence spectroscopies, and time-correlated single-photon counting experiments. It was found that the photoisomerization rate constants for IR125 and HDITCP in all the selected ionic liquids were almost identical and did not change with increasing ionic liquid viscosity. A comparison of the photoisomerization rate constants of IR125 and HDITCP in isoviscous aqueous glycerol solutions with those in ionic liquids showed that the photoisomerization energy barriers of IR125 and HDITCP in ionic liquids were about 2 kJ·mol-1 higher than those in the isoviscous aqueous glycerol solutions, indicating that specific interactions between IR125 or HDITCP and the ionic liquid restrain their respective photoisomerization processes in highly viscous ionic liquids.



Key wordsCyanine dye      Ionic liquid      Photoisomerization      Fluorescence quantum yield      Fluorescence lifetime     
Received: 13 January 2014      Published: 11 March 2014
MSC2000:  O644  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273280).

Corresponding Authors: YU An-Chi     E-mail: a.yu@chem.ruc.edu.cn
Cite this article:

YUAN Shu-Wei, LÜ Rong, YU An-Chi. Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths. Acta Phys. Chim. Sin., 2014, 30(5): 987-993.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201403112     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I5/987

(1) Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248
(2) Coleman, D.; Gathergood, N. Chem. Soc. Rev. 2010, 39, 600. doi: 10.1039/b817717c
(3) Petkovic, M.; Seddon, K. R.; Rebelo, L. P.; Silva Pereira, C. Chem. Soc. Rev. 2011, 40, 1383. doi: 10.1039/c004968a
(4) Jessop, P. G.; Jessop, D. A.; Fu, D.; Phan, L. Green Chem. 2012, 14, 1245. doi: 10.1039/c2gc16670d
(5) Wellens, S.; Thijs, B.; Binnemans, K. Green Chem. 2012, 14, 1657. doi: 10.1039/c2gc35246j
(6) Welton, T. Green Chem. 2011, 13, 225. doi: 10.1039/c0gc90047h
(7) Wilkes, J. S. Green Chem. 2002, 4, 73. doi: 10.1039/b110838g
(8) Li, H.; Bhadury, P. S.; Song, B.; Yang, S. RSC Adv. 2012, 2, 12525. doi: 10.1039/c2ra21310a
(9) Arzhantsev, S.; Ito, N.; Heitz, M.; Maroncelli, M. Chem. Phys. Lett. 2003, 381, 278. doi: 10.1016/j.cplett.2003.09.131
(10) Zhang, X. X.; Liang, M.; Ernsting, N. P.; Maroncelli, M. J. Phys. Chem. B 2013, 117, 4291. doi: 10.1021/jp305430a
(11) Ito, N.; Arzhantsev, S.; Maroncelli, M. Chem. Phys. Lett. 2004, 396, 83. doi: 10.1016/j.cplett.2004.08.018
(12) Gangamallaiah, V.; Dutt, G. B. J. Phys. Chem. B 2013, 117, 12261. doi: 10.1021/jp4078079
(13) Gangamallaiah, V.; Dutt, G. B. J. Chem. Phys. 2011, 135, 174505. doi: 10.1063/1.3656694
(14) Mali, K. S.; Dutt, G. B.; Mukherjee, T. J. Chem. Phys. 2008, 128, 124515. doi: 10.1063/1.2883954
(15) Koch, M.; Rosspeintner, A.; Angulo, G.; Vauthey, E. J. Am. Chem. Soc. 2012, 134, 3729. doi: 10.1021/ja208265x
(16) Li, X.; Liang, M.; Chakraborty, A.; Kondo, M.; Maroncelli, M. J. Phys. Chem. B 2011, 115, 6592. doi: 10.1021/jp200339e
(17) Rodrigues, C. A.; Graca, C.; Macoas, E.; Fedorov, A.; Afonso, C. A.; Martinho, J. M. J. Phys. Chem. B 2013, 117, 14108. doi: 10.1021/jp408616r
(18) Hayaki, S.; Kimura, Y.; Sato, H. J. Phys. Chem. B 2013, 117, 6759. doi: 10.1021/jp311883f
(19) Bhattacharya, B.; Samanta, A. J. Phys. Chem. B 2008, 112, 10101. doi: 10.1021/jp802930h
(20) Behar, D.; Gonzalez, C.; Neta, P. J. Phys. Chem. A 2001, 105, 7607. doi: 10.1021/jp011405o
(21) Grodkowski, J.; Neta, P. J. Phys. Chem. A 2002, 106, 5468. doi: 10.1021/jp020165p
(22) Brooks, C.; Doherty, A. P. J. Phys. Chem. B 2005, 109, 6276. doi: 10.1021/jp040554e
(23) Song, L.; Elsayed, M. A.; Lanyi, J. K. Science 1993, 261, 891. doi: 10.1126/science.261.5123.891
(24) Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A. Science 1998, 279, 1886. doi: 10.1126/science.279.5358.1886
(25) Hayakawa, R.; Higashiguchi, K.; Matsuda, K.; Chikyow, T.; Wakayama, Y. ACS Appl. Mater. Interfaces 2013, 5, 11371. doi: 10.1021/am403616m
(26) Goulet-Hanssens, A.; Barrett, C. J. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3058. doi: 10.1002/pola.26735
(27) Zhang, Z.; Wang, Y.; Yan, F.; Peng, D.; Ma, Z. Chin. J. Chem. 2011, 29, 153. doi: 10.1002/cjoc.v29.1
(28) Sundstroem, V.; Glllbro, T. J. Phys. Chem. 1982, 86, 1788. doi: 10.1021/j100207a012
(29) Velsko, S. P.; Waldeck, D. H.; Fleming, G. R. J. Chem. Phys. 1983, 78, 249. doi: 10.1063/1.444549
(30) Sitzmann, E. V.; Eisenthal, K. B. J. Phys. Chem. 1988, 92, 4579. doi: 10.1021/j100327a004
(31) Vaveliuk, P.; Scaffardi, L. B.; Duchowicz, R. J. Phys. Chem. 1996, 100, 11630. doi: 10.1021/jp953618h
(32) Xu, Q. H.; Fleming, G. R. J. Phys. Chem. A 2001, 105, 10187. doi: 10.1021/jp011924r
(33) Adamson, B. D.; Coughlan, N. J.; da Silva, G.; Bieske, E. J. J. Phys. Chem. A 2013, 117, 13319.
(34) Datta, A.; Mandal, D.; Pal, S. K.; Bhattacharyya, K. Chem. Phys. Lett. 1997, 278, 77. doi: 10.1016/S0009-2614(97)00979-2
(35) Pal, S. K.; Datta, A.; Mandal, D.; Bhattacharyya, K. Chem. Phys. Lett. 1998, 288, 793. doi: 10.1016/S0009-2614(98)00353-4
(36) Heilemann, M.; Margeat, E.; Kasper, R.; Sauer, M.; Tinnefeld, P. J. Am. Chem. Soc. 2005, 127, 3801. doi: 10.1021/ja044686x
(37) Jia, K.; Wan, Y.; Xia, A.; Li, S.; Gong, F. J. Phys. Chem. A 2007, 111, 1593. doi: 10.1021/jp067843i
(38) Redmond, R.W.; Kochevar, I. E.; Krieg, M.; Smith, G.; McGimpsey, W. G. J. Phys. Chem. A 1997, 101, 2773. doi: 10.1021/jp963001f
(39) Lee, H.; Berezin, M. Y.; Henary, M.; Strekowski, L.; Achilefu, S. J. Photochem. Photobiol. A: Chem. 2008, 200, 438. doi: 10.1016/j.jphotochem.2008.09.008
(40) Dempsey, G.; Bates, M.; Kowtoniuk, W. E.; Liu, D. R.; Tsien, R. Y. J. Am. Chem. Soc. 2009, 131, 18192. doi: 10.1021/ja904588g
(41) Jee, A. Y.; Park, S.; Lee, M. Phys. Chem. Chem. Phys. 2011, 13, 15227. doi: 10.1039/c1cp20835g
(42) Wei, Z.; Nakamura, T.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2011, 133, 8205. doi: 10.1021/ja110716b
(43) Dunkelberger, A. D.; Kieda, R. D.; Shin, J. Y.; Rossi Paccani, R.; Fusi, S.; Olivucci, M.; Crim, F. F. J. Phys. Chem. A 2012, 116, 3527. doi: 10.1021/jp300153a
(44) Wurth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Anal. Chem. 2012, 84, 1345. doi: 10.1021/ac2021954
(45) Tatikolov, A. S.; Akimkin, T. M.; Pronkin, P. G.; Yarmoluk, S. M. Chem. Phys. Lett. 2013, 556, 287. doi: 10.1016/j.cplett.2012.11.097
(46) Ghosh, S.; Mandal, S.; Banerjee, C.; Rao, V. G.; Sarkar, N. J. Phys. Chem. B 2012, 116, 9482. doi: 10.1021/jp305095n
(47) Ivanov, D. A.; Petrov, N. K.; Klimchuk, O.; Billard, I. Chem. Phys. Lett. 2012, 551, 111. doi: 10.1016/j.cplett.2012.09.024
(48) Tamura, H.; Arai, T. Chem. Lett. 2011, 40, 594. doi: 10.1246/cl.2011.594
(49) Asaka, T.; Akai, N.; Kawai, A.; Shibuya, K. J. Photochem. Photobiol. A: Chem. 2010, 209, 12. doi: 10.1016/j.jphotochem.2009.10.002
(50) Soper, S. A.; Mattingly, Q. L. J. Am. Chem. Soc. 1994, 116, 3744. doi: 10.1021/ja00088a010
(51) Yu, A.; Tolbert, C. A.; Farrow, D. A.; Jonas, D. M. J. Phys. Chem. A 2002, 106, 9407. doi: 10.1021/jp0205867

[1] TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. Chim. Sin., 2018, 34(2): 194-200.
[2] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[3] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1915-1922.
[4] LIU Dan-Yang, WANG Wan-Luo, XU Shou-Hong, LIU Hong-Lai. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. Chim. Sin., 2017, 33(4): 836-844.
[5] ZHENG Qi-Ge, LIU Hui, XIA Quan, LIU Qing-Shan, MOU Lin. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. Chim. Sin., 2017, 33(4): 736-744.
[6] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. Chim. Sin., 2017, 33(3): 513-519.
[7] BAI Jin, CHEN Xin, XI Zhao-Yi, WANG Xiang, LI Qiang, HU Shao-Zheng. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(3): 611-619.
[8] MA Ren-Jun, GUO Qian-Jin, LI Bo-Xuan, XIA An-Dong. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. Chim. Sin., 2017, 33(11): 2191-2198.
[9] YUAN Wei-Jin, DONG Zhen, ZHAO Long, YU Tian-Lin, ZHAI Mao-Lin. γ-Ray-Induced Radiolysis of CMPO/[C2mim][NTf2] and Its Effect on Eu3+ Extraction[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2101-2107.
[10] ZHENG Xiao-Di, ZHU Yan-Li, DONG Rui, JIAO Qing-Jie. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n= 4, 6, 8) on CL-20 Recrystallization[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1950-1959.
[11] WU Yang, YUE Li-Li, LIU Qiao-Zhen, WANG Xia. A Theoretical Study of the Thermodynamic Properties of Imidazolium Acetate Ionic Liquids[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1960-1966.
[12] MAI Jun-Lin, SUN De-Lin, QUAN Xue-Bo, LI Li-Bo, ZHOU Jian. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1649-1657.
[13] ZHANG Xiao-Ning, HU Hong-Mei. Investigation of Interfaces of Ionic Liquid via Kelvin Probe Force Microscopy at Room Temperature[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1722-1726.
[14] LI Yan, CHAI Jin-Ling. Dilational Viscoelasticity of Imidazole-Based Surface Active Ionic Liquids at the Air/Water Interface[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1227-1235.
[15] TONG Jing, CHEN Teng-Fei, ZHANG Duo, WANG Lin-Fu, TONG Jian, YANG Jia-Zhen. Molar Surface Gibbs Free Energy of the Aqueous Solution of the Ionic Liquid [C2mim][OAc][J]. Acta Phys. Chim. Sin., 2016, 32(5): 1161-1167.