Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (5): 965-972    DOI: 10.3866/PKU.WHXB201403171
Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity
FU Ping-Feng1, ZHANG Peng-Yi2
1 School of Civil and Environment Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China;
2 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
Download:   PDF(1635KB) Export: BibTeX | EndNote (RIS)      


Photoactive TiO2 nanostructured films (i.e., nanoflowers and nanowires) have been directly synthesized on Ti sheets using an alkali-hydrothermal route. Ultrafine noble metals (i.e., Au, Pt, Pd) nanoparticles (NPs) were homogenously dispersed onto the TiO2 nanostructures using a facile low temperature electrostatic self-assembly approach. The resulting noble-metal/TiO2-nanostructured films supported on Ti sheets had an all-in-one structure with all of the virtues of a porous framework and enhanced photocatalytic activity. Ultra highresolution field-emission scanning electron microscopy (FESEM) revealed that the noble metal NPs were uniformly dispersed on the TiO2 surface with good physical separation properties. The average sizes of the loaded Au, Pt, and Pd NPs were approximately 4.0, 2.0, and 10.0 nm, respectively. Noble metal NPs were deposited not only on the film surface but also in the interior framework of the TiO2 films with a depth of more than 580 nm, as revealed by Auger electron spectroscopic (AES) in-depth profiling analysis. X-ray photoelectron spectroscopy (XPS) analysis revealed that the Pt and Pd NPs had been partially oxidized to PtOabs and immobicompletely oxidized to PdO, respectively, whereas the Au NPs remained in a metallic state after being annealed in air at 300 ℃. During the electrostatic self-assembly process, the loading of the noble metal can be adjusted by controlling the assembly time and the colloidal pH value. The degradation of aqueous methyl orange showed that the Au/TiO2 (or Pt/TiO2)-nanostructured films possessed remarkably enhanced photocatalytic activity compared with pure TiO2 films, and revealed that the metal NPs played a positive role in separating photogenerated hole-electron pairs. However, the deposited PdO species had no discernible impact on the activity of the TiO2 nanostructures.

Key wordsSupported catalyst      Electrostatic self-assembly      Noble metal nanoparticle      TiO2 nanostructured film      Photocatalytic activity     
Received: 10 February 2014      Published: 17 March 2014
MSC2000:  O643  

The project was supported by the National High Technology Research and Development Program of China (863) (2012AA062701) and Collaborative Innovation Center for Regional Environmental Quality, China.

Corresponding Authors: ZHANG Peng-Yi     E-mail:
Cite this article:

FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity. Acta Phys. Chim. Sin., 2014, 30(5): 965-972.

URL:     OR

(1) He, X. L.; Cai, Y. Y.; Zhang, H. M.; Liang, C. H. J. Mater. Chem. 2011, 21, 475. doi: 10.1039/c0jm02404j
(2) Wang, J.; Lin, Z. Q. Chem. Mater. 2010, 22, 579. doi: 10.1021/cm903164k
(3) Lu, Y.; Chen, S.; Quan, X.; Yu, H. T. Chin. J. Catal. 2011, 32, 1838. [路莹, 陈硕, 全燮, 于洪涛. 催化学报, 2011, 32, 1838.] doi: 10.1016/S1872-2067(10)60288-4
(4) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K., Grimes, C. A. Nano Lett. 2005, 5, 191. doi: 10.1021/nl048301k
(5) Wu, Q.; Su, Y. F.; Sun, L.; Wang, M. Y.; Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231
(6) Peng, X. S.; Chen, A. C. Adv. Funct. Mater. 2006, 16, 1355.
(7) Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. doi: 10.1021/ja804852z
(8) Tachikawa, T.; Majima, T. J. Am. Chem. Soc. 2009, 131, 8485. doi: 10.1021/ja900194m
(9) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem. Int. Edit. 2005, 44, 7852.
(10) Fu, P. F.; Zhang, P. Y. Thin Solid Films 2011, 519, 3480. doi: 10.1016/j.tsf.2010.12.245
(11) Chen, S. H.; Xu, Y.; Lü, B. L.; Wu, D. Acta Phys. -Chim. Sin. 2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.] doi: 10.3866/PKU.WHXB20112933
(12) Wang, X. D.; Caruso, R. A. J. Mater. Chem. 2011, 21, 20. doi: 10.1039/c0jm02620d
(13) Lee, J. H.; Choi, H. S.; Lee, J. H.; Kim, Y. J.; Suh, S. J.; Chi, C. S.; Oh, H. J. J. Cryst. Growth 2009, 311, 638. doi: 10.1016/j.jcrysgro.2008.09.065
(14) Yang, K. H.; Chang, C. M. Mater. Res. Bull. 2013, 48, 372. doi: 10.1016/j.materresbull.2012.10.040
(15) Chan, S. C.; Barteau, M. A. Langmuir 2005, 21, 5588. doi: 10.1021/la046887k
(16) Xiao, F. X. J. Phys. Chem. C 2012, 116, 16487. doi: 10.1021/jp3034984
(17) Xiao, F. X. RSC Adv. 2012, 2, 12699. doi: 10.1039/c2ra22621a
(18) Fu, P. F.; Zhang, P. Y. Appl. Catal. B; Environ. 2010, 96, 176. doi: 10.1016/j.apcatb.2010.02.017
(19) Li, J.; Zeng, H. C. Chem. Mater. 2006, 18, 4270. doi: 10.1021/cm060362r
(20) Jin, Y. D.; Kang, X. F.; Song, Y. H.; Zhang, B. L.; Cheng, G. J.; Dong, S. J. Anal. Chem. 2001, 73, 2843. doi: 10.1021/ac001207d
(21) Tsunoyama, H.; Sakurai, H.; Tsukuda, T. Chem. Phys. Lett. 2006, 429, 528. doi: 10.1016/j.cplett.2006.08.066
(22) Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Langmuir 2004, 20, 11293. doi: 10.1021/la0478189
(23) Ye, Q.; Hu, H. Y.; Yu, B.; Wang, X. L.; Li, S. B.; Zhou, F. Phys. Chem. Chem. Phys. 2010, 12, 5480. doi: 10.1039/b925002f
(24) Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. J. Catal. 2003, 217, 427.
(25) Bian, Z. F.; Zhu, J.; Cao, F. L.; Lu, Y. F.; Li, H. X. Chem. Commun. 2009, 25, 3789.
(26) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721
(27) Zangmeister, C. D.; Picraux, L. B.; Van Zee, R. D.; Yao, Y. X.; Tour, J. M. Chem. Phys. Lett. 2007, 442, 390. doi: 10.1016/j.cplett.2007.06.012
(28) Ioannides, T.; Verykios, X. E. J. Catal. 1996, 161, 560. doi: 10.1006/jcat.1996.0218
(29) Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
(30) Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Chem. Mater. 2003, 15, 2049. doi: 10.1021/cm0204775
(31) Titkov, A. I.; Salanov, A. N.; Koscheev, S. V.; Boronin, A. I. Surf. Sci. 2006, 600, 4119. doi: 10.1016/j.susc.2006.01.131
(32) Zhong, Z.; Lin, J. Y.; Teh, S. P.; Teo, J.; Dautzenberg, F. M. Adv. Funct. Mater. 2007, 17, 1402.
(33) Wang, D. A.; Liu, Y.; Wang, C.W.; Zhou, F.; Liu, W. M. ACS Nano 2009, 3, 1249. doi: 10.1021/nn900154z
(34) Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 4538. doi: 10.1021/ja069113u
(35) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobiol. A: Chem. 2004, 163, 1. doi: 10.1016/S1010-6030(03)00289-2
(36) You, X. F.; Chen, F.; Zhang, J. L.; Anpo, M. Catal. Lett. 2005, 102, 247. doi: 10.1007/s10562-005-5863-5
(37) Wu, Z. B.; Sheng, Z. Y.; Wang, H. Q.; Liu, Y. Chemosphere 2009, 77, 264. doi: 10.1016/j.chemosphere.2009.07.060
(38) Sheng, Z. Y.; Wu, Z. B.; Liu, Y.; Wang, H. Q. Catal. Commun. 2008, 9, 1941. doi: 10.1016/j.catcom.2008.03.022
(39) Fu, P. F.; Zhang, P. Y.; Li, J. Appl. Catal. B: Environ. 2011, 105, 220. doi: 10.1016/j.apcatb.2011.04.021

[1] ZHANG Xiao-Dong, WANG Yin, YANG Yi-Qiong, CHEN Dan. Recent Progress in the Removal of Volatile Organic Compounds by Mesoporous Silica Materials and Supported Catalysts[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1633-1646.
[2] ZHAO Jia, LIU Li-Feng, ZHANG Ying. Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1549-1558.
[3] LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2015, 31(4): 764-770.
[4] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[5] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[6] ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1318-1324.
[7] LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Phys. Chim. Sin., 2014, 30(5): 899-907.
[8] WANG Jing-Sheng, WANG En-Jun, YU Yan-Long, GUO Li-Mei, CAO Ya-An. Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure[J]. Acta Phys. Chim. Sin., 2014, 30(3): 513-519.
[9] LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2113-2120.
[10] GUO Li-Mei KUANG Yuan-Jiang YANG Xiao-Dan YU Yan-Long YAO Jiang-Hong CAO Ya-An. Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1558-1565.
[11] JIANG He-Yan, WU Zhi-Feng, CHEN Hua. Asymmetric Hydrogenation of Aromatic Ketones Catalyzed by Cinchona-Modified Ir/SiO2[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1572-1581.
[12] ZHANG Po, HUANG Ming, CHU Wei, LUO Shi-Zhong, LI Tong. Effect of Silver Content on Catalytic Performances of SiO2-Supported Silver Tungstophoric Acid for the Synthesis of Polytetrahydrofuran[J]. Acta Phys. Chim. Sin., 2013, 29(04): 770-776.
[13] GUO Li-Mei, KUANG Yuan-Jiang, YANG Xiao-Dan, YU Yan-Long, YAO Jiang-Hong, CAO Ya-An. Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst[J]. Acta Phys. Chim. Sin., 2013, 29(02): 397-402.
[14] CHEN Jin-Yi, LI Nian, LI Jing, ZHU Liang, PENG Chang-Jun. Synthesis and Visible Light Photocatalytic Activity of Cross-Linked Sodium Rectorite/Cu2O Nanocomposites[J]. Acta Phys. Chim. Sin., 2011, 27(04): 932-938.
[15] ZHANG Xiao-Ru, LIN Yan-Hong, ZHANG Jian-Fu, HE Dong-Qing, WANG De-Jun. Photoinduced Charge Carrier Properties and Photocatalytic Activity of N-Doped TiO2 Nanocatalysts[J]. Acta Phys. Chim. Sin., 2010, 26(10): 2733-2738.