Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (5): 829-835    DOI: 10.3866/PKU.WHXB201403211
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Adsorption Mechanism of Hydrated Pb(OH)+ on the Kaolinite (001) Surface
WANG Juan1,2, XIA Shu-Wei1, YU Liang-Min1
1 Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong Province, P. R. China;
2 College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong Province, P. R. China
Download:   PDF(2128KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The adsorption behavior of Pb(OH)+ on the basal octahedral (001) surface of kaolinite has been investigated using the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) of density functional theory with periodic slab models, where the water environment was considered. The coordination geometry, coordination number, preferred adsorption position, and adsorption type were examined, with binding energy estimated. All the monodentate and bidentate complexes exhibited hemi- directed geometry with coordination numbers of 3-5. Site of "Ou" with "up" hydrogen was more favorable for monodentate complex than site of "Ol" with "lying" hydrogen. Monodentate complexation of "Ou" site with a high binding energy of -182.60 kJ·mol-1 should be the most preferred adsorption mode, while bidentate complexation on "OuOl" site of single Al center was also probable. The stability of adsorption complex was found closely related to the hydrogen bonding interactions between surface Ol and H in aqua ligands of Pb(Ⅱ). Mulliken population and density of states analyses showed that coupling of Pb 6p with the antibonding Pb 6s―O 2p states was the primary orbital interaction between Pb(Ⅱ) and the surface oxygen. Hydrogen complexation occupied a much large proportion in the joint coordination structure of bidentate complex, where bonding state filling predominated for the Pb―Ol interaction.



Key wordsPb(OH)+      Kaolinite      Chemical adsorption      Density functional theory      Coordination number     
Received: 21 January 2014      Published: 21 March 2014
MSC2000:  O647  
  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20677053) and Natural Science Foundation of Shandong Province, China (ZR2012CQ015).

Corresponding Authors: XIA Shu-Wei     E-mail: shuweixia@ouc.edu.cn
Cite this article:

WANG Juan, XIA Shu-Wei, YU Liang-Min. Adsorption Mechanism of Hydrated Pb(OH)+ on the Kaolinite (001) Surface. Acta Phys. Chim. Sin., 2014, 30(5): 829-835.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201403211     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I5/829

(1) Karlsson, K.; Viklander, M.; Scholes, L.; Revitt, M. J. Hazard. Mater. 2010, 178, 612. doi: 10.1016/j.jhazmat.2010.01.129
(2) Wasim Aktar, M.; Paramasivam, M.; Ganguly, M.; Purkait, S.; Sengupta, D. Environ. Monit. Assess. 2010, 160, 207. doi: 10.1007/s10661-008-0688-5
(3) ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Lead (Update). U. S. Department of Health and Human Services, Atlanta, Georgia. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96& tid=22 (accessed Nov 20, 2012).
(4) Tarasevich, Y. I.; Klimova, G. M. Appl. Clay Sci. 2001, 19, 95. doi: 10.1016/S0169-1317(01)00061-8
(5) Gupta, S. S.; Bhattacharyya, K. G. Phys. Chem. Chem. Phys. 2012, 14, 6698. doi: 10.1039/c2cp40093f
(6) Hong, H. L.; Min, X. M.; Zhou, Y. J. Wuhan Univ. Technol. 2007, 22, 661. doi: 10.1007/s11595-006-4661-2
(7) Spark, K. M.; Wells, J. D.; Johnson, B. B. Eur. J. Soil Sci. 1995, 46, 633. doi: 10.1111/ejs.1995.46.issue-4
(8) Srivastava, P.; Singh, B.; Angove, M. J. Colloid Interface Sci. 2005, 290, 28. doi: 10.1016/j.jcis.2005.04.036
(9) Hizal, J.; Apak, R.; Hoell, W. H. Environ. Prog. Sustain. 2009, 28, 493. doi: 10.1002/ep.v28:4
(10) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001
(11) Puskar, L.; Barran, P. E.; Duncombe, B. J.; Chapman, D.; Stace, A. J. Phys. Chem. A 2005, 109, 273. doi: 10.1021/jp047637f
(12) Shimoni-Livny, L.; Glusker, J. P.; Bock, C.W. Inorg. Chem. 1998, 37, 1853. doi: 10.1021/ic970909r
(13) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211
(14) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. Z. Kristallographie 2005, 220, 567.
(15) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(16) Ireta, J.; Neugebauer, J.; Scheffler, M. J. Phys. Chem. A 2004, 108, 5692. doi: 10.1021/jp0377073
(17) Sun, T.; Wang, Y. B. Acta Phys. -Chim. Sin. 2011, 27 (11), 2553. [孙涛, 王一波. 物理化学学报, 2011, 27 (11), 2553.] doi: 10.3866/PKU.WHXB20111017
(18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
(19) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(20) Bish, D. L. Clay. Clay Miner. 1993, 41, 738. doi: 10.1346/CCMN
(21) Hu, X. L.; Michaelides, A. Surf. Sci. 2008, 602, 960. doi: 10.1016/j.susc.2007.12.032
(22) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j
(23) Mason, S. E.; Iceman, C. R.; Tanwar, K. S.; Trainor, T. P.; Chaka, A. M. J. Phys. Chem. C 2009, 113, 2159. doi: 10.1021/jp807321e
(24) Gourlaouen, C.; Gerard, H.; Parisel, O. Chem. -Eur. J. 2006, 12, 5024.
(25) Wang, J.; Xia, S.W.; Yu, L. M. Acta Chim. Sin. 2013, 71, 1307. [王娟, 夏树伟, 于良民. 化学学报, 2013, 71, 1307.]
(26) Mishra, B.; Haack, E. A.; Maurice, P. A.; Bunker, B. A. Chem. Geol. 2010, 275, 199. doi: 10.1016/j.chemgeo.2010.05.009
(27) Bargar, J. R.; Brown, G. E., Jr.; Parks, G. A. Geochim. Cosmochim. Acta 1997, 61, 2617. doi: 10.1016/S0016-7037(97)00124-5
(28) Bargar, J. R.; Brown, G. E., Jr.; Parks, G. A. Geochim. Cosmochim. Acta 1997, 61, 2639. doi: 10.1016/S0016-7037(97)00125-7
(29) Walsh, A.; Watson, G.W. J. Solid State Chem. 2005, 178, 1422. doi: 10.1016/j.jssc.2005.01.030
(30) Mudring, A. V. Eur. J. Inorg. Chem. 2007, 2007 (6), 882.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[8] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[9] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[10] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[11] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[14] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2219-2226.
[15] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.