Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (6): 1155-1162    DOI: 10.3866/PKU.WHXB201401252
CATALYSIS AND SURFACE SCIENCE     
Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol
GAO Peng1,2, LI Feng2, ZHAO Ning2, WANG Hui1, WEI Wei1, SUN Yu-Han2,3
1 Center for Greenhouse Gas and Environmental Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China;
2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China;
3 Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
Download:   PDF(592KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cu/Zn/Al/(Zr)/(Y) hydrotalcite-like compounds with Cu:Zn:Al:Zr:Y atomic ratios of 2:1:1:0:0, 2:1: 0.8:0.2:0, 2:1:0.8:0:0.2, and 2:1:0.8:0.1:0.1 were prepared using the coprecipitation method. The mixed oxides were then obtained by the calcination of the precursors at 500 ℃ in air, and subsequently evaluated in terms of their catalytic performance for the synthesis of methanol from the hydrogenation of CO2. The asprepared samples were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, N2 adsorption, reactive N2O adsorption, H2 temperature-programmed reduction (H2-TPR), and H2/CO2 temperature-programmed desorption (H2/CO2 TPD) techniques. The results of these analyses showed that the BET specific surface area increased significantly with the introduction of Zr and Y, which was related to the amount of H2O and CO2 evolved from the precursors during calcination. The Cu specific surface area and Cu dispersion properties increased in the order of Cu/Zn/Al2 revealed that the CO2 conversion was dependent on the Cu specific surface area, and the CH3OH selectivity increased linearly as the proportion of strongly basic sites increased. The introduction of Zr and Y therefore favored the production of methanol and the maximum CH3OH yield was obtained over the Cu/Zn/Al/Zr/Y catalyst.



Key wordsHydrotalcite-like precursor      Modifier      Cu/Zn/Al catalyst      CO2 hydrogenation      Methanol     
Received: 10 February 2014      Published: 02 April 2014
MSC2000:  O643  
Fund:  

The project was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology, China (2013BAC11B02) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05010109, XDA05010110, XDA05010204).

Corresponding Authors: ZHAO Ning, WEI Wei     E-mail: zhaoning@sxicc.ac.cn;weiwei@sari.ac.cn
Cite this article:

GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-Han . Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol. Acta Phys. -Chim. Sin., 2014, 30(6): 1155-1162.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201401252     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I6/1155

(1) Choudhury, J. ChemCatChem 2012, 4 (5), 609. doi: 10.1002/cctc.201100495
(2) Olah, G. A.; Geoppert, A.; Prakash, G. K. S. Beyond Oil and Gas: the Methanol Economy, 1st ed.;Wiley-VCH:Weinheim, 2006; pp 173-187, 239-245.
(3) Pontzen, F.; Liebner,W.; Gronemann, V.; Rothaemel, M.; Ahlers, B. Catal. Today 2011, 171 (1), 242. doi: 10.1016/j.cattod.2011.04.049
(4) Yang, R. Q.; Yu, X. C.; Zhang, Y.; Li,W. Z.; Tsubaki, N. Fuel 2008, 87 (4-5), 443. doi: 10.1016/j.fuel.2007.06.020
(5) Jun, K.W.; Shen,W. J.; Rao, K. S. R.; Lee, K.W. Appl. Catal. A: Gen. 1998, 174, 231. doi: 10.1016/S0926-860X(98)00195-1
(6) Hong, Z. S.; Cao, Y.; Deng, J. F.; Fan, K. N. Catal. Lett. 2002, 82 (1-2), 37.
(7) Gao, P.; Li, F.; Zhang, L. N.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.; Sun, Y. H. Journal of CO 2 Utilization 2013, 2, 16. doi: 10.1016/j.jcou.2013.06.003
(8) Wang, J.; Chen, H. B.; Yun, H.; Lin, J. D.; Yi, J.; Zhang, H. B.; Liao, D.W. Acta Phys. -Chim. Sin. 2003, 19 (1), 65. [王进, 陈鸿博, 云虹, 林敬东, 易军, 张鸿斌, 廖代伟. 物理化学学报, 2003, 19 (1), 65.] doi: 10.3866/PKU.WHXB20030115
(9) Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.;Wang, H.; Sun, Y. H. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030
(10) An, X.; Li, J. L.; Zuo, Y. Z.; Zhang, Q.;Wang, D. Z.;Wang, J. F. Catal. Lett. 2007, 118 (3-4), 264. doi: 10.1007/s10562-007-9182-x
(11) Fernandez, J. M.; Barriga, C.; Ulibarri, M. A.; Labajos, F. M.; Rives, V. Chem. Mater. 1997, 9 (1), 312. doi: 10.1021/cm9603720
(12) Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2004, 87 (2-3), 402. doi: 10.1016/j.matchemphys.2004.06.010
(13) Alejandre, A.; Medina, F.; Salagre, P.; Correig, X.; Sueiras, J. E. Chem. Mater. 1999, 11 (4), 939. doi: 10.1021/cm980500f
(14) Zhang, L. H.; Zheng, C.; Li, F.; Evans, D. G.; Duan, X. J. Mater. Sci. 2008, 43 (1), 237. doi: 10.1007/s10853-007-2167-8
(15) Gao, P.; Li, F.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.; Sun, Y. H. Appl. Catal. A: Gen. 2013, 468, 442. doi: 10.1016/j.apcata.2013.09.026
(16) Shannon, R. D. Acta Crystallogr. A 1976, 32, 751. doi: 10.1107/S0567739476001551
(17) Wu, G. D.;Wang, X. L.; Chen, B.; Li, J. P.; Zhao, N.;Wei,W.; Sun, Y. H. Appl. Catal. A: Gen. 2007, 329, 106. doi: 10.1016/j.apcata.2007.06.031
(18) Velu, S.; Sabde, D. P.; Shah, N.; Sivasanker, S. Chem. Mater. 1998, 10 (11), 3451. doi: 10.1021/cm980185x
(19) Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2010, 49 (13), 5959. doi: 10.1021/ie9019193
(20) Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Sun, N. N.;Wei,W.; Zhong, L. S.; Sun, Y. H. Catal. Sci. Technol. 2012, 2 (7), 1447. doi: 10.1039/c2cy00481j
(21) Cheng, J.; Yu, J. J.;Wang, X. P.; Li, L. D.; Li, J. J.; Hao, Z. P. Energy Fuels 2008, 22 (4), 2131. doi: 10.1021/ef8000168
(22) Xu, Z. P.; Zeng, H. C. J. Phys. Chem. B 2000, 104 (44), 10206. doi: 10.1021/jp001963n
(23) Trujillano, R.; Holgado, M. J.; Pigazo, F.; Rives, V. Physica B 2006, 373 (2), 267. doi: 10.1016/j.physb.2005.11.154
(24) Behrens, M.; Kasatkin, I.; Kuhl, S.;Weinberg, G. Chem. Mater. 2010, 22 (2), 386. doi: 10.1021/cm9029165
(25) Gao, P.; Li, F.; Xiao, F.; Zhao, N.;Wei,W.; Zhong, L. S.; Sun, Y. H. Catal. Today 2012, 194 (1), 9. doi: 10.1016/j.cattod.2012.06.012
(26) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S.;Wu, G. S. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009
(27) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S. Acta Phys. -Chim. Sin. 2012, 28 (1), 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28 (1), 170.] doi: 10.3866/PKU.WHXB201228170
(28) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A: Gen. 2008, 350, 16. doi: 10.1016/j.apcata.2008.07.028
(29) Guo, X.; Mao, D.; Lu, G.;Wang, S.;Wu, G. J. Mol. Catal. A: Chem. 2011, 345 (1-2), 60. doi: 10.1016/j.molcata.2011.05.019
(30) Wilmer, H.; Genger, T.; Hinrichsen, O. J. Catal. 2003, 215, 188. doi: 10.1016/S0021-9517(03)00003-4
(31) Waugh, K. C. Solid State Ionics 2004, 168 (3-4), 327. doi: 10.1016/j.ssi.2003.05.001
(32) Wu, G. D.;Wang, X. L.;Wei,W.; Sun, Y. H. Appl. Catal. A: Gen. 2010, 377, 107. doi: 10.1016/j.apcata.2010.01.023
(33) Liu, Y. X.; Sun, K. P.; Ma, H.W.; Xu, X. L.;Wang, X. L. Catal. Commun. 2010, 11 (10), 880. doi: 10.1016/j.catcom.2010.03.014
(34) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42 (25), 6518. doi: 10.1021/ie020979s
(35) Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185. doi: 10.1016/j.jcat.2007.04.003
(36) Gao, L. Z.; Au, C. T. J. Catal. 2000, 189, 1. doi: 10.1006/jcat.1999.2682

[1] LIU Yanfang, HU Bing, YIN Yazhi, LIU Guoliang, HONG Xinlin. One-Pot Surfactant-free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229.
[2] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[3] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[4] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[7] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[8] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[9] Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.
[10] Chun-Xia TIAN,Jun-Shuai YANG,Li LI,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.
[11] Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1175-1182.
[12] Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 950-960.
[13] Xiao-Meng CHENG,Yu LI,Zong CHEN,Hong-Ping LI,Xiao-Fang ZHENG. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2671-2677.
[14] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1374-1382.
[15] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1077-1085.