Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (6): 1049-1054    DOI: 10.3866/PKU.WHXB201404092
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures
YIN Hai-Feng1, ZHANG Hong2, YUE Li1
1 College of Physics and Electronic Engineering, Kaili University, Kaili 556011, Guizhou Province, P. R. China;
2 College of Physical Science and Technology, Sichuan University, Chengdu 610065, P. R. China
Download:   PDF(754KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Near-infrared plasmons in N-doped hexagonal graphene nanostructures were investigated using time-dependent density functional theory. Along a certain direction, N-doped hexagonal graphene nanostructures with a side length of 1 nm have more intense plasmon resonances throughout the nearinfrared spectral region. The electrons that participate in these near-infrared plasmon resonances oscillate back and forth between the center and edge regions of the hexagonal nanostructures. The formation of a near-infrared plasmon resonance mode depends on the nitrogen-doping position and the scale size of the graphene nanostructure. It is only when the nitrogen-doped location is close to the edge of the nanostructures, near-infrared plasmon resonance mode of the graphene nanostructure will be formed. For N-doped hexagonal graphene nanostructures with a side length of less than 1 nm, there is no plasmon resonance in the nearinfrared spectral region.



Key wordsPlasmon      N-doped graphene      Nanostructure      Near-infrared spectroscopy      Time-dependent density functional theory     
Received: 15 January 2014      Published: 09 April 2014
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (11074176), Science and Technology Foundation of Guizhou Province, China (LKK[2013]19), Universities Outstanding Scientific and Technical Innovators Support Program of Department of Education of Guizhou Province, China (KY [2013]152), and Planning Project of Kaili University, China (Z1308).

Corresponding Authors: YIN Hai-Feng, ZHANG Hong     E-mail: yinhaifeng1212@126.com;hongzhang@scu.edu.cn
Cite this article:

YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures. Acta Phys. -Chim. Sin., 2014, 30(6): 1049-1054.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201404092     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I6/1049

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
(2) Chen, S.;Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Nature Materials 2012, 11, 203. doi: 10.1038/nmat3207
(3) Zou, H.; Ni, X.; Peng, S. L.; Ouyang, J.; Chen, Y.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2013, 29, 250. [邹辉, 倪祥, 彭盛霖, 欧阳俊, 陈羽, 欧阳方平. 物理化学学报, 2013, 29,250.] doi: 10.3866/PKU.WHXB201211141
(4) Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Nature Photonics 2012, 6, 749. doi: 10.1038/nphoton.2012.262
(5) Javier Garcia de Abajo, F. Science 2013, 339, 917. doi: 10.1126/science.1231119
(6) Halas, N. J.; Lal, S.; Chang,W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913. doi: 10.1021/cr200061k
(7) Tong, L. M.; Xu, H. X. Front. Phys. 2014, 9, 1. doi: 10.1007/s11467-013-0399-4
(8) Bostwick, A.; Speck, F.; Seyller, T.; Horn, K.; Polini, M.; Asgari, R.; MacDonald, A. H.; Rotenberg, E. Science 2010, 328, 999. doi: 10.1126/science.1186489
(9) Schiros, T.; Nordlund, D.; Pálova, L.; Prezzi, D.; Zhao, L.; Kim, K. S.;Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; Fischer, D.; Ogasawara, H.; Pettersson, L. G. M.; Reichman, D. R.; Kim, P.; Hybertsen, M. S.; Pasupathy, A. N. Nano Lett. 2012, 12, 3766. doi: 10.1021/nl3016335
(10) Zhao, L.; He, R.; Rim, K. T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L.; Nordlund, D.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F.; Kim, P.; Pinczuk, A.; Flynn, G.W.; Pasupathy, A. N. Science 2011, 333, 999. doi: 10.1126/science.1208759
(11) Gao, H.; Song, L.; Guo,W.; Huang, L.; Yang, D.;Wang, F.; Zuo, Y.; Fan, X.; Liu, Z.; Gao,W.; Vajtai, R.; Hackenberg, K.; Ajayan, P. M. Carbon 2012, 50, 4476. doi: 10.1016/j.carbon.2012.05.026
(12) Li, M.;Wu,W.; Ren,W.; Cheng, H. M.; Tang, N.; Zhong,W.; Du, Y. Appl. Phys. Lett. 2012, 101, 103107. doi: 10.1063/1.4750065
(13) Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R. Nano Lett. 2010, 10, 4975. doi: 10.1021/nl103079j
(14) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221
(15) Xiang, H. J.; Huang, B.; Li, Z. Y.;Wei, S. H.; Yang, J. L.; Gong, X. G. Phys. Rev. X 2012, 2, 011003.
(16) Hou, Z.;Wang, X.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.; Miyata, S. Phys. Rev. B 2012, 85, 165439. doi: 10.1103/PhysRevB.85.165439
(17) Ritter, K. A.; Lyding, J.W. Nature Materials 2009, 8, 235. doi: 10.1038/nmat2378
(18) Thongrattanasiri, S.; Manjavacas, A.; Javier García de Abajo, F. ACS Nano 2012, 6,1766. doi: 10.1021/nn204780e
(19) Yin, H. F.; Zhang, H. J. Appl. Phys. 2012, 111, 103502. doi: 10.1063/1.4706566
(20) Yan, X.; Cui, X.; Li, B.; Li, L. S. Nano Lett. 2010, 10, 1869. doi: 10.1021/nl101060h
(21) Yan, X.; Cui, X.; Li, L. S. J. Am. Chem. Soc. 2010, 132, 5944. doi: 10.1021/ja1009376
(22) Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. J. Am. Chem. Soc. 2012, 134, 15. doi: 10.1021/ja206030c
(23) Liu, Q.; Guo, B. D.; Rao, Z.; Zhang, B. H.; Gong, J. R. Nano Lett. 2013, 13, 2436. doi: 10.1021/nl400368v
(24) Brar, V.W.; Jang, M.; Sherrott, M.; Lopez, J. J.; Atwater, H. A. Nano Lett. 2013, 13, 2541. doi: 10.1021/nl400601c
(25) Robinson, T. J.; Tabakman, S. M.; Liang, Y.;Wang, H.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175
(26) Fang, Z. Y.;Wang, Y. M.; Schlather, A. E.; Liu, Z.; Ajayan, P. M.; Javier García de Abajo, F.; Nordlander, P.; Zhu, X.; Halas, N. J. Nano Lett. 2014, 14, 299. doi: 10.1021/nl404042h
(27) Marques, M. A. L.; Castro, A.; Bertsch, G. F.; Rubio, A. Comput. Phys. Commun. 2003, 151, 60. doi: 10.1016/S0010-4655(02)00686-0
(28) Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993
(29) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566. doi: 10.1103/PhysRevLett.45.566
(30) Rubio, A.; Alonso, J. A.; Lopez, J. M.; Stott, M. J. Physica B 1993, 183, 247. doi: 10.1016/0921-4526(93)90035-5
(31) Marinopoulos, A. G.; Reining, L.; Olevano, V.; Rubio, A. Phys. Rev. Lett. 2002, 89, 076402. doi: 10.1103/PhysRevLett.89.076402
(32) Marinopoulos, A. G.; Reining, L.; Rubio, A.; Vast, N. Phys. Rev. Lett. 2003, 91, 046402. doi: 10.1103/PhysRevLett.91.046402
(33) Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Phys. Rev. B 2008, 77, 233406. doi: 10.1103/PhysRevB.77.233406
(34) Kim, S.; Hwang, S.W.; Kim, M. K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S. H.; Ko, G.; Sim, S.; Sone, C.; Choi, H. J.; Bae, S.; Hong, B. H. ACS Nano 2012, 6, 8203. doi: 10.1021/nn302878r
(35) Mishchenko, E. G.; Shytov, A. V.; Silvestrov, P. G. Phys. Rev. Lett. 2010, 104, 156806. doi: 10.1103/PhysRevLett.104.156806

[1] Gang LEI,Yan HE. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 11-21.
[2] Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.
[3] Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1001-1009.
[4] Hao HUANG,Ran LONG,Yu-Jie XIONG. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.
[5] Jin SUN,Zong-Ling DING,Yuan-Qin YU,Guang LI. Absorption Spectra of Azobenzene Molecules on Au Nanoparticle Surface[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2199-2206.
[6] Xiao-Yu CHEN,Jing-Dong WANG,An-Chi YU. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2184-2190.
[7] Hai-Tao SUN,Cheng ZHONG,Zhen-Rong SUN. Recent Advances in the Optimally "Tuned" Range-Separated Density Functional Theory[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2197-2208.
[8] Hai-Feng YIN. Plasmon Excitations in Silicene Quantum Dot Dimers[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1446-1452.
[9] Yuan-Yuan WANG,Qun-Xing XU,Hua-Qing XIE,Zi-Hua WU,Jiao-Jiao XING. Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2518-2522.
[10] Chuan-Xiang YE,Hui-Li MA,Wan-Zhen LIANG. Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 301-312.
[11] Li-Mei. HOU,Zhi. WEN,Yin-Xiang. LI,Hua-You. HU,Yu-He. KAN,Zhong-Min. SU. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1504-1512.
[12] Xi. HE,Tong-Dan. TANG,Jun. YI,Bi-Ju. LIU,Fang-Fang. WANG,Bin. REN,Jian-Zhang. ZHOU. Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1575-1583.
[13] ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua. Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 360-368.
[14] Yan-Zhong. HAO,Zhi-Min. GUO,Bao. SUN,Juan. PEI,Shang-Xin. WANG,Ying-Pin. LI. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2109-2116.
[15] Chen. CHEN,Dan-Feng. LU,Jin. CHENG,Zhi-Mei. QI. Simulation of Surface Plasmon Coupled Emission with Silver Film[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2023-2028.