Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2014,Vol.30>> Issue(6)>> 1180-1186     doi: 10.3866/PKU.WHXB201404141         中文摘要
CATALYSIS AND SURFACE SCIENCE
In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3
YANG Yu-Wen1, FENG Gang2, LU Zhang-Hui1, HU Na1, ZHANG Fei1, CHEN Xiang-Shu1
1 College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China;
2 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P. R. China
Full text: PDF (2311KB) Export: BibTeX | EndNote (RIS) Supporting Info

Cobalt nanoparticles (NPs) supported on reduced graphene oxide (RGO) were synthesized by a one-step in situ co-reduction of an aqueous solution of cobalt(Ⅱ) chloride and graphene oxide (GO) using ammonia borane (AB) as the sole reductant under ambient conditions. The as-synthesized Co/RGO catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of AB at room temperature. The assynthesized Co/RGO nanocatalysts exhibited much higher catalytic activity than the RGO-free Co counterpart. Compared with the nanocatalysts reduced by NaBH4, the Co/RGO nanocatalysts generated by the milder reductant AB exhibited superior catalytic activity. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co/RGO has zero order kinetics with respect to the substrate concentration. The hydrolysis activation energy is estimated to be about 27.10 kJ·mol-1, which is lower than most reported data for the same reaction conusing non-noble metal catalysts and some noble metal containing catalysts. Furthermore, the RGO-supported Co NPs show good recyclability and magnetic reusability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to the facile preparation of other RGO-based metallic systems.



Keywords: Energy storage material   Reduced graphene oxide   Co nanoparticle   Ammonia borane   Hydrogen generation  
Received: 2014-01-09 Accepted: 2014-04-14 Publication Date (Web): 2014-04-14
Corresponding Authors: LU Zhang-Hui, CHEN Xiang-Shu Email: luzh@jxnu.edu.cn;cxs66cn@jxnu.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (21103074), Natural Science Foundation of Jiangxi Province, China (20114BAB203010, 20132BAB203014), Jiangxi Provincial Department of Science and Technology, China (20111BDH80023), Jiangxi Provincial Education Department, China (GJJ14230), Scientific Research Foundation of Graduate School of Jiangxi Province, China (YC2013-S105), Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University, China, Young Scientist Foundation of Jiangxi Province, China (20133BCB23011), and "Gan-po talent 555" Project of Jiangxi Province, China.

Cite this article: YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. -Chim. Sin., 2014,30 (6): 1180-1186.    doi: 10.3866/PKU.WHXB201404141

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
(2) Grochala,W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283. doi: 10.1021/cr030691s
(3) Graetz, J. Chem. Soc. Rev. 2009, 38, 73. doi: 10.1039/b718842k
(4) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.W. Chem. Rev. 2012, 112, 782. doi: 10.1021/cr200274s
(5) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. doi: 10.1021/cr100088b
(6) Chen, P.; Zhu, M. Mater. Today 2008, 11, 36.
(7) Lu, Z. H.; Xu, Q. Funct. Mater. Lett. 2012, 5, 1230001. doi: 10.1142/S1793604712300010
(8) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698. doi: 10.1039/c2ee22937d
(9) Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y.W.; Chen, X. S. J. Nanomater. 2014, 729029.
(10) Rakap, M.; Kalu, E. E.; Özkar, S. J. Power Sources 2012, 210, 184. doi: 10.1016/j.jpowsour.2012.03.025
(11) Yan, J. M.;Wang, Z. L.;Wang, H. L.; Jiang, Q. J. Mater. Chem. 2012, 22, 10990. doi: 10.1039/c2jm31042b
(12) Yang, Y.W.; Zhang, F.;Wang, H. L.; Yao, Q. L.; Chen, X. S.; Lu, Z. H. J. Nanomater. 2014, 294530.
(13) Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Inorg. Chem. 2007, 46, 788. doi: 10.1021/ic061712e
(14) Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass,W. N.; Gore, J. P. J. Power Sources 2009, 188, 238. doi: 10.1016/j.jpowsour.2008.11.085
(15) Du, Y. S.; Cao, N.; Yang, L.; Luo,W.; Cheng, G. Z. New J. Chem. 2013, 37, 3035. doi: 10.1039/c3nj00552f
(16) Xi, P. X.; Chen, F. J.; Xie, G. Q.; Ma, C.; Liu, H.Y.; Shao, C. W.;Wang, J.; Xu, Z. H.; Xu, X. M.; Zeng, Z. Z. Nanoscale 2012, 4, 5597. doi: 10.1039/c2nr31010d
(17) Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135. doi: 10.1016/j.jpowsour.2007.03.015
(18) Yang, L.; Luo,W.; Cheng, G. E. ACS Appl. Mater. Interfaces 2013, 5, 8231. doi: 10.1021/am402373p
(19) Rachiero, G. P.; Demirci, U. B.; Miele, P. Int. J. Hydrog. Energy 2011, 36, 7051. doi: 10.1016/j.ijhydene.2011.03.009
(20) Simagia, V. I.; Komova, O. V.; Ozerova, A. M.; Netskina, O. V.; Odegova, G. V.; Kelleman, D. G.; Bulavcheoko, O. V.; Ishchenko, A. V. Appl. Catal. A: Gen. 2011, 384, 86.
(21) Yan, L.; Su, J.; Meng, X. Y.; Luo,W.; Cheng, G. Z. J. Mater. Chem. A 2013, 1, 10016. doi: 10.1039/c3ta11835e
(22) Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang,W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Int. J. Hydrog. Energy 2013, 38, 5330. doi: 10.1016/j.ijhydene.2013.02.076
(23) Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. J. Mater. Chem. 2012, 22, 5065. doi: 10.1039/c2jm14787d
(24) Rakap, M.; Özkar, S. Int. J. Hydrog. Energy 2010, 35, 3341. doi: 10.1016/j.ijhydene.2010.01.138
(25) Metin, Ö.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1424.
(26) Yao, Q. L.; Shi,W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. J. Power Sources 2014, 257, 293. doi: 10.1016/j.jpowsour.2014.01.122
(27) Yang, Y.W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi,W. M.; Chen, X. S.;Wang, T. T. RSC Advances 2014, 4, 13749. doi: 10.1039/c3ra47023g
(28) Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190. doi: 10.1016/j.jpowsour.2005.05.043
(29) Rakap, M.; Kalu, E. E.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1448. doi: 10.1016/j.ijhydene.2010.10.097
(30) Eom, K. S.; Cho, K.W.; Kwon, H. S. Int. J. Hydrog. Energy 2010, 35, 181.
(31) Garaj, S.; Hubbard,W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379
(32) Lee, C.;Wei, X. D.; Kysar, J.W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
(33) Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong,W. H.; Hammond, P. T.; Park, H. S. ACS Nano 2011, 5, 5167. doi: 10.1021/nn2013113
(34) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
(35) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. - Chim. Sin. 2012, 28 (11), 2754. [李松梅, 王博, 刘建华, 于美, 安军伟. 物理化学学报, 2012, 28 (11), 2754.] doi: 10.3866/PKU.WHXB201208292
(36) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4),858.] doi: 10.3866/PKU.WHXB20110411
(37) Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Angew Chem. Int. Edit. 2010, 49, 9368. doi: 10.1002/anie.201003903
(38) Vinodgopal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. J. Am. Chem. Soc. 2010, 1, 1987.
(39) Liu, C. B.;Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Small 2011, 7, 1203. doi: 10.1002/smll.v7.9
(40) Cao, N.; Su, J.; Luo,W.; Cheng, G. Z. Int. J. Hydrog. Energy 2014, 39, 426. doi: 10.1016/j.ijhydene.2013.10.059
(41) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. doi: 10.1021/cr010350j
(42) Yang, L.; Cao, N.; Du, C.; Dai, H. M.; Hu, K.; Luo,W.; Cheng, G. Z. Materials Letters 2014, 115, 113. doi: 10.1016/j.matlet.2013.10.039
(43) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew Chem. Int. Edit. 2005, 44, 7852.
(44) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(45) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u
(46) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757

1. DANG Cheng-Xiong, YANG Hao-Bo, YU Hao, WANG Hong-Juan, PENG Feng.CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1527-1533
2. WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng.Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Phys. -Chim. Sin., 2015,31(7): 1406-1412
3. XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng.Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015,31(5): 913-919
4. LIU Xing, LI Yue-Xiang, PENG Shao-Qin, LAI Hua.Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization[J]. Acta Phys. -Chim. Sin., 2015,31(4): 612-626
5. ZHAO Wan-Guo, SU Li, ZHOU Zhen-Ning, ZHANG Hai-Jun, LU Li-Lin, ZHANG Shao-Wei.Preparation of Pd/Co Bimetallic Nanoparticles and Their Catalytic Activity for Hydrogen Generation[J]. Acta Phys. -Chim. Sin., 2015,31(1): 145-152
6. WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan.Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. -Chim. Sin., 2015,31(1): 90-98
7. ZHAO Jian, ZHOU Wei, MA Jian-Xin.Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1325-1331
8. WANG Li, MA Jun-Hong.Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1267-1273
9. LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming.Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1344-1350
10. ZHAO Jian, ZHOU Wei, XU Jun-Ke, MA Jian-Xin.Effect of Pretreatment Routes on the Performance and Structure of Ni-Co Bimetallic Catalysts[J]. Acta Phys. -Chim. Sin., 2013,29(04): 806-812
11. YUAN Wen-Hui, LIU Xiao-Chen, LI Li.Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. -Chim. Sin., 2013,29(01): 151-156
12. TAO Jing-Liang, XIONG Yuan-Quan.Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis[J]. Acta Phys. -Chim. Sin., 2013,29(01): 205-211
13. JIANG Li-Long, MA Yong-De, CAO Yan-Ning, YANG Yang, WEI Ke-Mei.Modified Bauxite Supported Ruthenium Catalysts for Hydrogen Evolution in the Water-Gas Shift Reaction[J]. Acta Phys. -Chim. Sin., 2012,28(03): 674-680
14. YAN Shi, HUANG Qin-Dong, LIN Jing-Dong, YUAN You-Zhu, LIAO Dai-Wei.Photocatalytic Activity of Cobalt Doped Titania for H2 Evolution[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2406-2410
15. CHEN Meng-Nan, ZHANG Dong-Yun, THOMPSON Levi T., MA Zi-Feng.Hydrogen Production from Steam Reforming of Ethanol over Pd Promoted ZnO/Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2185-2190
16. XU Jun-Ke, SHEN Li-Hong, ZHOU Wei, MA Jian-Xin.Mechanism of Biogas Reforming for Hydrogen Production over Ni-Co Bimetallic Catalyst[J]. Acta Phys. -Chim. Sin., 2011,27(03): 697-704
17. YU Bo, LIU Ming-Yi, ZHANG Wen-Qiang, ZHANG Ping, XU Jing-Ming.Polarization Loss of Single Solid Oxide Electrolysis Cells and Microstructural Optimization of the Cathode[J]. Acta Phys. -Chim. Sin., 2011,27(02): 395-402
18. WANG Xiao-Lei, PAN Xiang-Min, LIN Rui, KOU Su-Yuan, ZOU Wei-Bing, MA Jian-Xin.Dimethyl Ether Steam Reforming for Hydrogen Production over Cu-Ni/γ-Al2O3 Bi-Functional Catalyst[J]. Acta Phys. -Chim. Sin., 2010,26(05): 1296-1304
19. WANG Xiao-Lei, PAN Xiang-Min, LIN Rui, REN Ke-Wei, KOU Su-Yuan, MA Jian-Xin.Dimethyl Ether Steam Reforming for Hydrogen Production on CuO/ZnO/Y2O3/γ-Al2O3 Bi-Functional Catalyst[J]. Acta Phys. -Chim. Sin., 2009,25(06): 1097-1102
20. HU Yuan-Fang; LI Yue-Xiang; PENG Shao-Qin; LV Gong-Xuan; LI Shu-Ben.Photocatalytic Properties of Composite of SiO2 and Pt-Cd0.53Zn0.47S Solid Solutions[J]. Acta Phys. -Chim. Sin., 2008,24(11): 2071-2076
21. XU Jun-Ke; REN Ke-Wei; WANG Xiao-Lei; ZHOU Wei; PAN Xiang-Min; MA Jian-Xin.Effect of La2O3 on Ni/γ-Al2O3 Catalyst for Biogas Reforming to Hydrogen[J]. Acta Phys. -Chim. Sin., 2008,24(09): 1568-1572
22. LIU Fu-Sheng; JI Ren; WU Min; SUN Yue-Ming.Hydrogen Production from Water Splitting Using Perylene Dye-Sensitized Pt/TiO2 Photocatalyst[J]. Acta Phys. -Chim. Sin., 2007,23(12): 1899-1904
23. SHEN Pei-Kang;WANG Sheng-Long;HU Zhi-Yi;LI Yong-Liang;ZENG Rong;HUANG Yue-Qiang.Hydrogen Production by Alcohol Electrolysis[J]. Acta Phys. -Chim. Sin., 2007,23(01): 107-110
24. ZHOU Zhen;YAN Tian-Ying;GAO Xue-Ping.Simulation and Design for Energy Storage Materials[J]. Acta Phys. -Chim. Sin., 2006,22(09): 1168-1174
25. ZOU Ji-Jun;LIU Chang-Jun.Preparation of NiO/SrTiO3 with Cold Plasma Treatment for PhotocatalyticWater Splitting[J]. Acta Phys. -Chim. Sin., 2006,22(08): 926-931
26. LI Hai-Ling; WANG Wen-Jing; KANG Guo-Hu; HUANG Jin-Zhao; XU Zheng.The Effect of Reactive Pressure to Fe:NiOx Film as Anode Catalytic Film in Hydrogen Producing System by Solar Cell[J]. Acta Phys. -Chim. Sin., 2006,22(03): 330-334
27. Wu Yu-Qi;Lü Gong-Xuan;Li Shu-Ben.Hydrogen Production by Pt/TiO2 Anaerobic Photocatalytic Reforming Degradation of Aqueous Monoethanolamine[J]. Acta Phys. -Chim. Sin., 2004,20(07): 755-758
28. Li Yue-Xiang;Lu Gong-Xuan;Li Shu-Ben;Dong Lu-Hu.Photocatalytic Production of Hydrogen with Degrading Pollutants and Characterization by in situ Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 2003,19(04): 329-333
29. Wang Wei-Ping;Xi Jing-Yu;Wang Zhi-Fei;Lü Gong-Xuan;Zhao Pu.Partial Oxidation of Ethanol to Hydrogen over Ni-Fe Catalysts[J]. Acta Phys. -Chim. Sin., 2002,18(05): 426-431
30. QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang.Effective Strategies towards High-Performance Photoanode for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top