Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (6): 1180-1186    DOI: 10.3866/PKU.WHXB201404141
In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3
YANG Yu-Wen1, FENG Gang2, LU Zhang-Hui1, HU Na1, ZHANG Fei1, CHEN Xiang-Shu1
1 College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China;
2 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P. R. China
Download:   PDF(2311KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Cobalt nanoparticles (NPs) supported on reduced graphene oxide (RGO) were synthesized by a one-step in situ co-reduction of an aqueous solution of cobalt(Ⅱ) chloride and graphene oxide (GO) using ammonia borane (AB) as the sole reductant under ambient conditions. The as-synthesized Co/RGO catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of AB at room temperature. The assynthesized Co/RGO nanocatalysts exhibited much higher catalytic activity than the RGO-free Co counterpart. Compared with the nanocatalysts reduced by NaBH4, the Co/RGO nanocatalysts generated by the milder reductant AB exhibited superior catalytic activity. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co/RGO has zero order kinetics with respect to the substrate concentration. The hydrolysis activation energy is estimated to be about 27.10 kJ·mol-1, which is lower than most reported data for the same reaction conusing non-noble metal catalysts and some noble metal containing catalysts. Furthermore, the RGO-supported Co NPs show good recyclability and magnetic reusability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to the facile preparation of other RGO-based metallic systems.

Key wordsEnergy storage material      Reduced graphene oxide      Co nanoparticle      Ammonia borane      Hydrogen generation     
Received: 09 January 2014      Published: 14 April 2014
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21103074), Natural Science Foundation of Jiangxi Province, China (20114BAB203010, 20132BAB203014), Jiangxi Provincial Department of Science and Technology, China (20111BDH80023), Jiangxi Provincial Education Department, China (GJJ14230), Scientific Research Foundation of Graduate School of Jiangxi Province, China (YC2013-S105), Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University, China, Young Scientist Foundation of Jiangxi Province, China (20133BCB23011), and "Gan-po talent 555" Project of Jiangxi Province, China.

Corresponding Authors: LU Zhang-Hui, CHEN Xiang-Shu     E-mail:;
Cite this article:

YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3. Acta Phys. Chim. Sin., 2014, 30(6): 1180-1186.

URL:     OR

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
(2) Grochala,W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283. doi: 10.1021/cr030691s
(3) Graetz, J. Chem. Soc. Rev. 2009, 38, 73. doi: 10.1039/b718842k
(4) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.W. Chem. Rev. 2012, 112, 782. doi: 10.1021/cr200274s
(5) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. doi: 10.1021/cr100088b
(6) Chen, P.; Zhu, M. Mater. Today 2008, 11, 36.
(7) Lu, Z. H.; Xu, Q. Funct. Mater. Lett. 2012, 5, 1230001. doi: 10.1142/S1793604712300010
(8) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698. doi: 10.1039/c2ee22937d
(9) Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y.W.; Chen, X. S. J. Nanomater. 2014, 729029.
(10) Rakap, M.; Kalu, E. E.; Özkar, S. J. Power Sources 2012, 210, 184. doi: 10.1016/j.jpowsour.2012.03.025
(11) Yan, J. M.;Wang, Z. L.;Wang, H. L.; Jiang, Q. J. Mater. Chem. 2012, 22, 10990. doi: 10.1039/c2jm31042b
(12) Yang, Y.W.; Zhang, F.;Wang, H. L.; Yao, Q. L.; Chen, X. S.; Lu, Z. H. J. Nanomater. 2014, 294530.
(13) Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Inorg. Chem. 2007, 46, 788. doi: 10.1021/ic061712e
(14) Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass,W. N.; Gore, J. P. J. Power Sources 2009, 188, 238. doi: 10.1016/j.jpowsour.2008.11.085
(15) Du, Y. S.; Cao, N.; Yang, L.; Luo,W.; Cheng, G. Z. New J. Chem. 2013, 37, 3035. doi: 10.1039/c3nj00552f
(16) Xi, P. X.; Chen, F. J.; Xie, G. Q.; Ma, C.; Liu, H.Y.; Shao, C. W.;Wang, J.; Xu, Z. H.; Xu, X. M.; Zeng, Z. Z. Nanoscale 2012, 4, 5597. doi: 10.1039/c2nr31010d
(17) Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135. doi: 10.1016/j.jpowsour.2007.03.015
(18) Yang, L.; Luo,W.; Cheng, G. E. ACS Appl. Mater. Interfaces 2013, 5, 8231. doi: 10.1021/am402373p
(19) Rachiero, G. P.; Demirci, U. B.; Miele, P. Int. J. Hydrog. Energy 2011, 36, 7051. doi: 10.1016/j.ijhydene.2011.03.009
(20) Simagia, V. I.; Komova, O. V.; Ozerova, A. M.; Netskina, O. V.; Odegova, G. V.; Kelleman, D. G.; Bulavcheoko, O. V.; Ishchenko, A. V. Appl. Catal. A: Gen. 2011, 384, 86.
(21) Yan, L.; Su, J.; Meng, X. Y.; Luo,W.; Cheng, G. Z. J. Mater. Chem. A 2013, 1, 10016. doi: 10.1039/c3ta11835e
(22) Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang,W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Int. J. Hydrog. Energy 2013, 38, 5330. doi: 10.1016/j.ijhydene.2013.02.076
(23) Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. J. Mater. Chem. 2012, 22, 5065. doi: 10.1039/c2jm14787d
(24) Rakap, M.; Özkar, S. Int. J. Hydrog. Energy 2010, 35, 3341. doi: 10.1016/j.ijhydene.2010.01.138
(25) Metin, Ö.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1424.
(26) Yao, Q. L.; Shi,W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. J. Power Sources 2014, 257, 293. doi: 10.1016/j.jpowsour.2014.01.122
(27) Yang, Y.W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi,W. M.; Chen, X. S.;Wang, T. T. RSC Advances 2014, 4, 13749. doi: 10.1039/c3ra47023g
(28) Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190. doi: 10.1016/j.jpowsour.2005.05.043
(29) Rakap, M.; Kalu, E. E.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1448. doi: 10.1016/j.ijhydene.2010.10.097
(30) Eom, K. S.; Cho, K.W.; Kwon, H. S. Int. J. Hydrog. Energy 2010, 35, 181.
(31) Garaj, S.; Hubbard,W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379
(32) Lee, C.;Wei, X. D.; Kysar, J.W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
(33) Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong,W. H.; Hammond, P. T.; Park, H. S. ACS Nano 2011, 5, 5167. doi: 10.1021/nn2013113
(34) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
(35) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. - Chim. Sin. 2012, 28 (11), 2754. [李松梅, 王博, 刘建华, 于美, 安军伟. 物理化学学报, 2012, 28 (11), 2754.] doi: 10.3866/PKU.WHXB201208292
(36) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4),858.] doi: 10.3866/PKU.WHXB20110411
(37) Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Angew Chem. Int. Edit. 2010, 49, 9368. doi: 10.1002/anie.201003903
(38) Vinodgopal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. J. Am. Chem. Soc. 2010, 1, 1987.
(39) Liu, C. B.;Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Small 2011, 7, 1203. doi: 10.1002/smll.v7.9
(40) Cao, N.; Su, J.; Luo,W.; Cheng, G. Z. Int. J. Hydrog. Energy 2014, 39, 426. doi: 10.1016/j.ijhydene.2013.10.059
(41) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. doi: 10.1021/cr010350j
(42) Yang, L.; Cao, N.; Du, C.; Dai, H. M.; Hu, K.; Luo,W.; Cheng, G. Z. Materials Letters 2014, 115, 113. doi: 10.1016/j.matlet.2013.10.039
(43) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew Chem. Int. Edit. 2005, 44, 7852.
(44) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(45) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u
(46) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757

[1] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. Chim. Sin., 2017, 33(5): 993-1000.
[2] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[5] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[6] ZHAO Wan-Guo, SU Li, ZHOU Zhen-Ning, ZHANG Hai-Jun, LU Li-Lin, ZHANG Shao-Wei. Preparation of Pd/Co Bimetallic Nanoparticles and Their Catalytic Activity for Hydrogen Generation[J]. Acta Phys. Chim. Sin., 2015, 31(1): 145-152.
[7] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1267-1273.
[8] LI Le, HE Yun-Qiu, CHU Xiao-Fei, LI Yi-Ming, SUN Fang-Fang, HUANG He-Zhou. Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors[J]. Acta Phys. Chim. Sin., 2013, 29(08): 1681-1690.
[9] LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming. Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1344-1350.
[10] YUAN Wen-Hui, LIU Xiao-Chen, LI Li. Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. Chim. Sin., 2013, 29(01): 151-156.
[11] TAO Jing-Liang, XIONG Yuan-Quan. Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis[J]. Acta Phys. Chim. Sin., 2013, 29(01): 205-211.
[12] WANG Chuan-Ge, ZENG Fan-Gui, PENG Zhi-Long, LI Xia, ZHANG Li. Kinetic Analysis of a Pyrolysis Process and Hydrogen Generation of Humic Acids of Yimin Lignite Fusain Using the Distributed Activation Energy Model[J]. Acta Phys. Chim. Sin., 2012, 28(01): 25-36.
[13] MIN Shi-Xiong, Lü Gong-Xuan. Preparation of CdS/Graphene Composites and Photocatalytic Hydrogen Generation from Water under Visible Light Irradiation[J]. Acta Phys. Chim. Sin., 2011, 27(09): 2178-2184.
[14] LI Li, WANG Yi-Jing, WANG Ya-Ping, REN Qiu-Li, JIAO Li-Fang, YUAN Hua-Tang. Effect of Ni Content in Co1-xNixB Catalysts on Hydrogen Generation during Hydrolysis[J]. Acta Phys. Chim. Sin., 2010, 26(06): 1575-1578.
[15] ZHOU Zhen;YAN Tian-Ying;GAO Xue-Ping. Simulation and Design for Energy Storage Materials[J]. Acta Phys. Chim. Sin., 2006, 22(09): 1168-1174.