Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (6): 1113-1120    DOI: 10.3866/PKU.WHXB201404182
ELECTROCHEMISTRY AND NEW ENERGY     
Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries
WANG Wen-Jun, ZHAO Hong-Bin, YUAN An-Bao, FANG Jian-Hui, XU Jia-Qiang
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
Download:   PDF(942KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We report the synthesis of a novel multiwalled carbon nanotube-Na3V2(PO4)3 (MWCNT-NVP) composite with excellent electrochemical performance. The composite material was prepared by a hydrothermal process combined with a sol-gel method. The MWCNT-NVP composite consists of Na3V2(PO4)3 (NVP) and a small amount of multiwalled carbon nanotubes (MWCNTs) (8.74%(w)). The MWCNTs were successfully dispersed between the NVP nanoparticles, which was confirmed by field-emission scanning electron microscopy, and served as a kind of "electronic wire". Electrochemical measurements show that the MWCNTNVP composite has enhanced capacity and cycling performance compared with pristine Na3V2(PO4)3. At a current rate of 0.2C (35.2 mA·g-1), the initial reversible discharge capacity of the MWCNT-NVP was 82.2 mAh·g-1, and 72.3 mAh·g-1 was maintained after 100 cycles when cycled between 3.0 and 4.5 V. Good cycling performance was also observed when cycling between 1.0 and 3.0 V. The initial reversible capacity was 100.6 mAh·g-1 and the capacity retention was 90% after 100 cycles. Additionally, electrochemical AC impedance showed that the electronic conductivity of MWCNT-NVP was significantly improved in the presence of the MWCNTs. These results indicate that the MWCNT-NVP composite has outstanding properties, and is thus a promising alternative for lithium-ion batteries with relatively low lithium consumption.



Key wordsSodium vanadium phosphate      Carbon nanotube      Hydrothermal sol-gel method      Na superionic conductor structure      Lithium-ion battery     
Received: 06 March 2014      Published: 18 April 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (61071040), Leading Academic Discipline Project of Shanghai Municipal Education Commission, China (J50102), and Research and Innovation Project of Shanghai Municipal Education Commission, China.

Corresponding Authors: XU Jia-Qiang     E-mail: Xujiaqiang@shu.edu.cn
Cite this article:

WANG Wen-Jun, ZHAO Hong-Bin, YUAN An-Bao, FANG Jian-Hui, XU Jia-Qiang. Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(6): 1113-1120.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201404182     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I6/1113

(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(2) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z
(3) Tarascon, J. M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680
(4) Ellis, B. L.; Makahnouk,W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007
(5) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(6) Zu, C. X.; Li, H. Energy & Environmental Science 2011, 4, 2614. doi: 10.1039/c0ee00777c
(7) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.W.; Lu, X. C.; Choi, D.W.; Lemmon, J. P.; Liu, J. Chemical Reviews 2011, 111, 3577. doi: 10.1021/cr100290v
(8) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
(9) Cao, Y. L.; Xiao, L. F.;Wang,W.; Choi, D.W.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Advanced Materials 2011, 23, 3155. doi: 10.1002/adma.201100904
(10) Yamada, Y.; Doi, T.; Tanaka, I.; Okada, S.; Yamaki, J. Journal of Power Sources 2011, 196, 4837. doi: 10.1016/j.jpowsour.2011.01.060
(11) Lee, K. T.; Ramesh, T. N.; Nan, F.; Botton, G.; Nazar, L. F. Chemistry of Materials 2011, 23, 3593. doi: 10.1021/cm200450y
(12) Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Solid State Sciences 2006, 8, 1215. doi: 10.1016/j.solidstatesciences.2006.05.009
(13) Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Electrochemistry Communications 2011, 13, 1225. doi: 10.1016/j.elecom.2011.08.038
(14) Komaba, S.; Nakayama, T.; Ogata, A.; Shimizu, T.; Takei, C.; Takada, S.; Hokura, A.; Nakai, I. ECS Transactions 2009, 16, 43.
(15) Hamani, D.; Ati, M.; Tarascon, J. M.; Rozier, P. Electrochemistry Communications 2011, 13, 938. doi: 10.1016/j.elecom.2011.06.005
(16) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chemistry of Materials 2011, 23, 4109. doi: 10.1021/cm202076g
(17) Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2011, 158, A1067.
(18) Berthelot, R.; Carlier, D.; Delmas, C. Nature Materials 2011, 10, 74. doi: 10.1038/nmat2920
(19) Yang, S. Y.;Wang, X. Y.;Wei, J. L.; Li, X. Q.; Tang, A. P. Acta Phys. -Chim. Sin. 2008, 24 (9), 1669. [杨顺毅, 王先友, 魏建良, 李秀琴, 唐安平. 物理化学学报, 2008, 24 (9), 1669.] doi:10.1016/S1872-1508(08)60068-6
(20) Zhong, Y. J.; Li, J. T.;Wu, Z. G.; Zhong, B. H.; Guo, X. D.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1989. [钟艳君, 李君涛, 吴振国, 钟本和, 郭孝东, 黄令, 孙世刚. 物理化学学报, 2013, 29 (9), 1989.] doi: 10.3866/PKU.WHXB201306181
(21) Zhang, C. X.; He, J. P.; Zhao, G.W.; Zhao, J. Q. Chinese Journal of Inorganic Chemistry 2007, 23 (4), 649. [张传香, 何建平, 赵桂网, 赵建庆. 无机化学学报, 2007, 23 (4), 649.]
(22) Masquelier, C.; Patoux, S.;Wurm, C.; Morcrette, M. Lithium Batteries: Science and Technology; Nazri, G. A., Pistoia, G. Eds.; Kluwer Academic: Boston, 2004; pp 445-477.
(23) Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2010, 157, A536.
(24) Du, K.; Guo, H.W.; Hu, G. R.; Peng, Z. D.; Cao, Y. B. Journal of Power Sources 2013, 223, 284. doi: 10.1016/j. jpowsour.2012.09.069
(25) Wei, S.;Wang, C.; Liu, H. M.; Yang,W. S. Chemistry-A European Journal 2013, 19, 14712. doi: 10.1002/chem.201300005
(26) Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen,W.; Chen, L. Q. Electrochemistry Communications 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009
(27) Kang, J.; Baek, S.; Mathew, V.; Gim, J.; Song, J.; Park, H.; Chae, E.; Rai, A.; Kim, J. Journal of Materials Chemistry 2012, 22, 20857. doi: 10.1039/c2jm34451c
(28) Jung, Y. H.; Lim, C. H.; Kim, D. K. Journal of Materials Chemistry 2013, A1, 11350.
(29) Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. Journal of Power Sources 2014, 247, 975. doi: 10.1016/j.jpowsour.2013.09.051
(30) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0
(31) Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444. doi: 10.1038/360444a0
(32) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966
(33) Goldberger, J.; Fan, R.; Yang, P. D. Accounts Chem. Res. 2006, 39, 239. doi: 10.1021/ar040274h
(34) Tang, M. X.; Yuan, A. B.; Zhao, H. B.; Xu, J. Q. Journal of Power Sources 2013, 235, 5. doi: 10.1016/j.jpowsour.2013.01.182
(35) Chen, L.; Shen, L. F.; Nie, P.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Chimica Sinica 2012, 70 (1), 15. [陈琳, 申来法, 聂平, 苏晓飞, 张校刚, 李洪森. 化学学报, 2012, 70 (1), 15.] doi: 10.6023/A1105275
(36) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (2), 373. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28 (2), 373.] doi: 10.3866/PKU.WHXB201112021
(37) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29 (3), 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29 (3), 546.] doi: 10.3866/PKU.WHXB201301091
(38) Gao,W.; Bao, L. Y.; Su, Y. F.; Tian, J.; Liu,W.; Chen, S.;Wu, F. Chemical Journal of Chinese Universities 2013, 34 (7), 1709. [高伟, 包丽颖, 苏岳锋, 田君, 刘伟, 陈实, 吴锋. 高等学校化学学报, 2013, 34 (7), 1709.] doi: 10.7503/cjcu20121057
(39) Park, M. S.; Needham, S. A.;Wang, G. X.; Kang, Y. M.; Park, J. S.; Dou, S. X.; Liu, H. K. Chem. Mater. 2007, 19, 2406. doi: 10.1021/cm0701761
(40) Moriguchi, I.; Shono, Y.; Yamada, H.; Kudo, T. J. Phys. Chem. B 2008, 112, 14560. doi: 10.1021/jp802649t
(41) Wen, Z. H.;Wang, Q.; Zhang, Q.; Li, J. H. Adv. Funct. Mater. 2007, 17, 2772. doi: 10.1002/adfm.200600739
(42) Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Nano Lett. 2009, 9, 1002. doi: 10.1021/nl803081j
(43) Nanjundaswamy, K. S.; Padhi, A. K.; Goodenough, J. B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Solid State Ionics 1996, 92, 1.
(44) Jian, Z. L. Novel Electrode Materials for Stationary Batteries. Ph.D. Dissertation,Wuhan University of Technology,Wuhan, 2012. [简泽浪. 新型储能电池电极材料研究[D]. 武汉: 武汉理工大学, 2012.]
(45) Cushing, B. L.; Goodenough, J. B. Journal of Solid State Chemistry 2001, 162 (2), 176. doi: 10.1006/jssc.2001.9213
(46) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. Solid State Ionics 1988, 28, 419.
(47) Mazza, D. Journal of Solid State Chemistry 2001, 156 (1), 154. doi: 10.1006/jssc.2000.8975
(48) Gao, P.; Nuli, Y.; He, Y. S.;Wang, J. Z.; Minett, A. I.; Yang, J.; Chen, J. Chemical Communications 2010, 46 (48), 9149. doi: 10.1039/c0cc02870c
(49) Lee, S. Y.; Park, J. H.; Park, P.; Kim, J. H.; Ahn, S.; Lee, K. J.; Lee, H. D.; Park, J. S.; Kim, D. H.; Jeong, Y. U. Journal of Solid State Electrochemistry 2010, 14 (6), 951. doi: 10.1007/s10008-009-0888-0

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[3] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[6] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[7] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[8] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[9] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[10] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[11] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[14] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[15] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.