Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (6): 1121-1126    DOI: 10.3866/PKU.WHXB201404221
Synthesis and Modification of a Lamellar Co3O4 Anode for Lithium-Ion Batteries
HUANG Guo-Yong1, XU Sheng-Ming1,2, LI Lin-Yan1, WANG Xue-Jun1, LU Sha-Sha1
1 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China;
2 Beijing Key Laboratory of Fine Ceramics, Tsinghua University, Beijing 100084, P. R. China
Download:   PDF(1249KB) Export: BibTeX | EndNote (RIS)      


For advanced performance lithium-ion batteries (LIBs) various novel electrode materials with high energy density have been extensively investigated. Cobaltosic oxide (Co3O4), commonly used as an anode in LIBs, has attracted much interest because of its high theoretical specific capacity (890 mAh·g-1), high tap density, and stable chemical properties. However, its practical use has been hindered because of its low electronic conductivity and poor rate capability. To address these problems, we investigated a liquid phase precipitation method followed by thermal treatment and obtained a unique lamellar Co3O4 powder. Its X-ray diffraction (XRD) diffraction peaks match the standard pattern for cubic phase Co3O4 with good crystallinity. We found that the Co3O4 powder consists of many irregular sheets (1.5-3.0 μm in diameter, 100-300 nm in thickness) with numerous poles by scanning electronmicroscopy (SEM).Additionally, the surface area was about 30.5 m2·g-1, and this was calculated from BET nitrogen adsorption isotherm measurement data. Remarkably, perfect performance was obtained as evaluated by electrochemical measurements, including a high initial discharge capacity (1444.5 mAh·g-1 at 0.1C) and excellent capacity retention (charge capacity after 50 cycles was still greater than 1100.0 mAh·g-1 at 0.1C). However, its rate capability was still not adequate (75.3% of the first charge capacity after 50 cycles at 1C). To improve the rate capability, commercial carbon nanotubes (CNTs) mixed with the Co3O4 powder was used to enhance the electronic conductivity. The charge capacity retention ratios were 96.3% after 70 cycles at 1C and 97.0% after 50 cycles at 2C. Therefore, enhanced electrochemical performance with impressive rate capability was obtained, as expected.

Key wordsCo3O4      Lamellar      Carbon nanotube      Lithium-ion battery      Anode     
Received: 16 January 2014      Published: 22 April 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51274130).

Corresponding Authors: XU Sheng-Ming, LI Lin-Yan     E-mail:;
Cite this article:

HUANG Guo-Yong, XU Sheng-Ming, LI Lin-Yan, WANG Xue-Jun, LU Sha-Sha. Synthesis and Modification of a Lamellar Co3O4 Anode for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(6): 1121-1126.

URL:     OR

(1) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
(2) Chen, J. J. Materials 2013, 6, 156. doi: 10.3390/ma6010156
(3) Huang, G. Y.; Xu, S. M.;Wang, J. L.; Li, L. Y.;Wang, X. J. Acta Chim. Sin. 2013, 71, 1589. [黄国勇, 徐盛明, 王俊莲, 李林艳, 王学军. 化学学报, 2013, 71, 1589.] doi: 10.6023/A13060656
(4) Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535. doi: 0.1126/science.1222453
(5) Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. J. Power Sources 2013, 235, 67. doi: 10.1016/j.jpowsour.2013.01.190
(6) Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.;Wang, D. Angew . Chem. 2013, 125, 1. doi: 10.1002/ange.201209858
(7) Yan, N.; Hu, L.; Li, Y.;Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q.W. J. Phys. Chem. C 2012, 116, 7227. doi: 10.1021/jp2126009
(8) Hong, S. H.; Bae, J. S.; Ahn, H. J. Met. Mater. Int. 2008, 14, 229. doi: 10.3365/met.mat.2008.04.229
(9) Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem . Eur . J. 2009, 15, 6169. doi: 10.1002/chem.200802561
(10) Lu, Y.;Wang, Y.; Zou, Y. Q.; Jiao, Z.; Zhao, B.; He, Y. Q.;Wu, M. H. Electrochem. Commun. 2010, 12, 101. doi: 10.1016/j.elecom.2009.10.046
(11) Shim, H.W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim, D.W. ACS Nano 2011, 5, 443. doi: 10.1021/nn1021605
(12) Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Huang, J. N.; Yan, W. J.; Liu, G. Mater. Lett. 2008, 62, 3410. doi: 10.1016/j.matlet.2008.03.033
(13) Chou, S. L.;Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2008, 182, 359. doi: 10.1016/j.jpowsour.2008.03.083
(14) Rui, X. H.; Tan, H. T.; Sim, D. H.; Liu,W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. J. Power Sources 2013, 222, 97. doi: 1016/j.jpowsour.2012.08.094
(15) Wang, J. T.;Wang, Y.; Huang, B.; Yang, J. Y.; Tan, A.; Lu, S. G. Acta Phys. -Chim. Sin. 2014, 30, 305. [王建涛, 王耀, 黄斌, 杨娟玉, 谭翱, 卢世刚. 物理化学学报, 2014, 30, 305.] doi: 10.3866/PKU.WHXB201312022
(16) Wang, X.; Guan, H.; Chen, S.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; Golberg, D. Chem. Commun. 2011, 47, 12280. doi: 10.1039/c1cc15169j
(17) Wang, G. L.; Liu, J. C.; Tang, S.; Li, H. Y.; Cao, D. X. J. Solid State Electrochem. 2011, 15, 2587. doi: 10.1007/s10008-010-1254-y
(18) Park, J.; Moon,W. G.; Kim, G. P.; Nam, I.; Park, S.; Kim, Y.; Yi, J. Electrochim. Acta 2013, 105, 110. doi: 10.1016/j.electacta.2013.04.170
(19) Cao, F.;Wang, D. Q.; Deng, R. P.; Tang, J. K.; Song, S. Y.; Lei, Y. Q.;Wang, S.; Su, S. Q.; Yang, X. G.; Zhang, H. J. Cryst. Eng. Commun. 2011, 13, 2123. doi: 10.1039/c0ce00392a
(20) Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, T. H. Chem . Eur . J. 2010, 16, 5215. doi: 10.1002/chem.200901632
(21) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29, 293.] doi: 10.3866/PKU.WHXB201211142
(22) Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425. doi: 10.1021/nn9012675
(23) Wang, Y. F.; Zhang, L. J. J. Power Sources 2012, 209, 20. doi: 10.1016/j.jpowsour.2012.02.074
(24) Zhan, L.;Wang, Y. L.; Qiao,W. M.; Ling, L. C.; Yang, S. B. Electrochim. Acta 2012, 78, 440. doi: 10.1016/j.electacta.2012.06.017
(25) Liu, D. Q.; Yang, Z. B.;Wang, P.; Li, F.;Wang, D. S.; He, D. Y. Nanoscale 2013, 5, 1917. doi: 10.1039/c2nr33383j
(26) Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.; Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.; Griebel, J. J.; Ratcliff, E. L.; Nebesny, K. G.; Pyun, J. ACS Nano 2009, 3, 3143. doi: 10.1021/nn900483w

[1] ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2018, 34(2): 219-226.
[2] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[5] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[6] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[8] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[9] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[10] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[11] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[12] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[13] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[14] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[15] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.