Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (6): 1055-1060    DOI: 10.3866/PKU.WHXB201404231
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
First-Principles Study on the Microstructure of Triple-Phase Boundaries in the Ni/Yttria-Stabilized Zirconia Anode
FU Zhao-Ming, WANG Ming-Yang, ZHANG Yan-Xing, ZHANG Na, YANG Zong-Xian
College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, Henan Province, P. R. China
Download:   PDF(931KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Using the classical Monte Carlo method and density functional theory (DFT) calculations, various stable adsorption configurations for the Ni/yttria-stabilized zirconia anode (Ni/YSZ) were predicted. Compared with previously reported results, more stable triple phase boundary structures were found. Based on these optimized configurations, charge transfer is discussed in detail, as O ion migration occurs where electron transfer from YSZ to Ni is important in describing the electrochemical reaction at the anodes of the solid oxide fuel cells. We thus analyzed the possible factors that affect the degree of electron transfer. The results indicate that a new electrochemical mechanism is at work in the Ni/YSZ system.



Key wordsSolid oxide fuel cell      First-principles      Adsorption      Triple-phase boundary      Conformational search     
Received: 10 February 2014      Published: 23 April 2014
MSC2000:  O641  
  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (11247012, 11174070) and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (104200510014).

Corresponding Authors: YANG Zong-Xian     E-mail: yzx@henannu.edu.cn
Cite this article:

FU Zhao-Ming, WANG Ming-Yang, ZHANG Yan-Xing, ZHANG Na, YANG Zong-Xian. First-Principles Study on the Microstructure of Triple-Phase Boundaries in the Ni/Yttria-Stabilized Zirconia Anode. Acta Phys. Chim. Sin., 2014, 30(6): 1055-1060.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201404231     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I6/1055

(1) Ormerod, R. M. Chem. Soc. Rev. 2003, 32, 17. doi: 10.1039/b105764m
(2) Williams, M. C.; Strakey, J. P.; Surdoval,W. A.;Wilson, L. C. Solid State Ionics 2006, 177, 2039. doi: 10.1016/j.ssi.2006.02.051
(3) Meng, X. X.; Gong, X.; Yang, N. T.; Tan, X. Y.; Ma, Z. F. Acta Phys. -Chim. Sin. 2013, 29, 1719. [孟秀霞, 宫勋, 杨乃涛, 谭小耀, 马紫峰. 物理化学学报, 2013, 29, 1719.] doi: 10.3866/PKU.WHXB201305151
(4) Liu, D. D.; Xie, Y. M.; Liu, J.;Wang, J. X. Acta Phys. -Chim. Sin. 2014, 30, 331. [刘丹丹, 谢永敏, 刘江, 王金霞. 物理化学学报, 2014, 30, 331.] doi: 10.3866/PKU.WHXB201312241
(5) Lei, Z.; Zhu, Q. S.; Han, M. F. Acta Phys. -Chim. Sin. 2010, 26, 583. [雷泽, 朱庆山, 韩敏芳. 物理化学学报, 2010, 26, 583.] doi: 10.3866/PKU.WHXB20100323
(6) Hansen, K. V.; Norrman, K.; Mogensen, M. J. Am. Chem. Soc. 2004, 151, A1436.
(7) Sukeshini, A. M.; Habibzadeh, B.; Becker, B. P.; Stoltz, C. A.; Eichhorn, B.W.; Jackson, G. S. J. Am. Chem. Soc. 2006, 153, A705.
(8) Grgicak, C. M.; Giorgi, J. B. J. Phys. Chem. C 2007, 111, 15446. doi: 10.1021/jp073525n
(9) Bieberle, A. Gauckler, L. Solid State Ionics 2002, 146, 23. doi: 10.1016/S0167-2738(01)01004-9
(10) Bessler,W. G. Solid State Ionics 2005, 176, 997. doi: 10.1016/j.ssi.2005.01.002
(11) Vogler, M.; Bieberle-Hütter, A.; Gauckler, L.;Warnatz, J.; Bessler,W. G. J. Am. Chem. Soc. 2009, 156, B663.
(12) Goodwin, D. G.; Zhu, H.; Colclasure, A. M.; Kee, R. J. J. Am. Chem. Soc. 2009, 156, 1004.
(13) Anderson, A. B.; Vayner, E. Solid State Ionics 2006, 17, 1355.
(14) Ingram, D. B.; Linic, S. J. Am. Chem. Soc. 2009, 156, B1457.
(15) Shishkin, M.; Ziegler, T. J. Phys. Chem. C 2009, 113, 21667. doi: 10.1021/jp905615c
(16) Cucinotta, C. S.; Bernasconi, M.; Parrinello, M. Phys. Rev. Lett. 2011, 107, 206103. doi: 10.1103/PhysRevLett.107.206103
(17) Ammal, S. C.; Heyden, A. J. Phys. Chem. Lett. 2012, 3, 2767. doi: 10.1021/jz301132b
(18) Rossmeisl, J.; Bessler,W. G. Solid State Ionics 2008, 178, 1694. doi: 10.1016/j.ssi.2007.10.016
(19) Shishkin, M.; Ziegler, T. J. Phys. Chem. C 2010, 114, 11209. doi: 10.1021/jp1030575
(20) Xia, X.; Oldman, R. J.; Catlow, C. R. A. J. Mater. Chem. 2012, 22, 8594. doi: 10.1039/c2jm16604f
(21) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
(22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(23) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
(24) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
(25) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010
(26) Christensen, A.; Carter, E. A. J. Chem. Phys. 2001, 114, 5816. doi: 10.1063/1.1352079
(27) Jarvis, E. A.; Carter, E. A. J. Am. Ceram. Soc. 2003, 86, 373.
(28) Sasaki, T.; Matsunaga, K.; Ohta, H.; Hosono, H.; Yamamoto, T.; Ikuhara, Y. Mater. Trans. 2004, 45, 2137. doi: 10.2320/matertrans.45.2137
(29) Neyman, K. M.; Inntam, C.; Moskaleva, L. V.; Rösch, N. Chem. Eur. J. 2007, 13, 277. doi: 10.1002/chem.200600545
(30) Sun, C.; Stimming, U. J. Power Sources 2007, 171, 247. doi: 10.1016/j.jpowsour.2007.06.086

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[5] WANG Xiao-Qiang, LIU Jiang, XIE Yong-Min, CAI Wei-Zi, ZHANG Ya-Peng, ZHOU Qian, YU Fang-Yong, LIU Mei-Lin. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1614-1620.
[6] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[7] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[8] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[9] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[10] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Sin., 2017, 33(2): 386-392.
[11] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[12] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[13] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[14] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[15] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.