Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (7): 1267-1273    DOI: 10.3866/PKU.WHXB201405052
Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation
WANG Li1, MA Jun-Hong1,2
1. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China;
2. Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, P. R. China
Download:   PDF(781KB) Export: BibTeX | EndNote (RIS)      


Nitrogen-doped reduced graphene oxide materials (N-RGO) derived from pyrolysis of graphene oxide (GO)/polyaniline composites were used as a support for the immobilization of Pt nanoparticles. The morphologies and structures of N-RGO and Pt/N-RGO were comprehensively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The electrocatalytic activities of the as-prepared catalysts for CO stripping and methanol oxidation were investigated by cyclic voltammetry and chronoamperometry. The results showed that GO was reduced to multilayer graphene by thermal annealing accompanied with successful incorporation of N atoms into RGO. Moreover, the presence of the doped N atoms enhanced the surface defects and electrical conductivity of the RGO materials. Pt nanoparticles on N-RGO were more evenly dispersed, had better CO tolerance, and had higher activity/stability for methanol oxidation than those on RGO without N doping.

Key wordsPolyaniline      Reduced graphene oxide      Nitrogen-doped      Platinum electrocatalyst      Methanol oxidation     
Received: 22 March 2014      Published: 05 May 2014
MSC2000:  O646  

The project was supported by the Doctoral Scientific Research Starting Foundation of Xinjiang University, China (BS100110), Open Project Program of Xinjiang Laboratory of Advanced Functional Materials, China (XJDX0902-2010-06), and National Natural Science Foundation of China (21201146).

Corresponding Authors: MA Jun-Hong     E-mail:
Cite this article:

WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation. Acta Phys. Chim. Sin., 2014, 30(7): 1267-1273.

URL:     OR

(1) Wei, D.; Liu, Y.;Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t
(2) Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. ACS Nano 2012, 6, 205. doi: 10.1021/nn203393d
(3) Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B 2008, 79 (1), 89. doi: 10.1016/j.apcatb.2007.09.047
(4) Xiong, B.; Zhou, Y. K.; O′Hayre, R.; Shao, Z. P. Appl. Surf. Sci. 2013, 266, 433. doi: 10.1016/j.apsusc.2012.12.053
(5) Wu, J.; Hu, F.; Hu, X.;Wei, Z. D.; Shen, P. K. Electrochimica Acta 2008, 53 (28), 8341. doi:10.1016/j.electacta.2008.06.051
(6) Zhou, C.W.; Kong, J.; Yenilmez, E.; Dai, H. J. Science 2000, 290, 1552. doi: 10.1126/science.290.5496.1552
(7) He, D. P.; Jiang, Y. L.; Lv, H. F.; Pan, M.; Mu, S. C. Applied Catalysis B: Environmental 2013, 132 -133, 379.
(8) Xiao, X.; Zhou, Y. K.; Lu, J. M.; Tian, X. H.; Zhu, H. X.; Liu, J. G. Electrochimica Acta 2014, 120, 439. doi: 10.1016/j. electacta.2013.12.062
(9) Zhang, L. S.; Liang, X. Q.; Song,W. G.;Wu, Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055. doi: 10.1039/c0cp00789g
(10) Sun, L.;Wang, L.; Tian, G. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. RSC Adv. 2012, 2, 4498. doi: 10.1039/c2ra01367c
(11) Wang, Y.; Shao, Y. Y.; Matson, D.W.; Li, J. H.; Lin, Y. H. ACS Nano 2010, 4, 1790.
(12) Hassan, F. M.; Chabot, V.; Li, J. D.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. P. J. Mater. Chem. A 2013, 1, 2904.
(13) Xu, X.; Zhou, Y. K.; Yuan, T.; Li, Y.W. Electrochimica Acta 2013, 112, 587. doi: 10.1016/j.electacta.2013.09.038
(14) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Adv. Energy Mater. 2012, 2 (7), 884.
(15) Lin, Z.Y.; Song, M. K.; Ding, Y.; Liu, Y.; Liu, M. L.;Wong, C. P. Phys. Chem. Chem. Phys. 2012, 14, 3381. doi: 10.1039/c2cp00032f
(16) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
(17) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Nano Energy 2013, 2, 241. doi: 10.1016/j.nanoen.2012.09.002
(18) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Rodney, S. R. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j
(19) Wu, G.; Mack, N. H.; Gao,W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. ACS Nano 2012, 6 (11), 9764. doi: 10.1021/nn303275d
(20) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(21) Wu, G.; Swaidan, R. J.; Li, D. Y.; Li, N. Electrochimica Acta 2008, 53, 7622. doi: 10.1016/j.electacta.2008.03.082
(22) Stankovicha, S.; Dikina, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.;Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034
(23) Liu, S.;Wang, J.; Zeng, J.; Ou, J.; Li, Z.; Liu, X.; Yang, S. G. J. Power Sources 2010, 195 (15), 4628. doi: 10.1016/j. jpowsour.2010.02.024
(24) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401
(25) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud′homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36. doi: 10.1021/nl071822y
(26) Xin, Y. C.; Liu, J. G.; Zhou, Y.; Liu,W. M.; Gao, J.; Xie, Y.; Yin, Y.; Zou, Z. G. Electrochimica Acta 2012, 60, 354. doi: 10.1016/j.electacta.2011.11.062
(27) Kuo, P. L.; Chen,W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A. J. Phys. Chem. B 2006, 110, 3071.
(28) Wu, G.; Li, D.; Dai, C.;Wang, D.; Li, N. Langmuir 2008, 24, 3566. doi: 10.1021/la7029278
(29) Groves, M. N.; Chan, A. S.W.; Malardier, J. C.; Jugroot, M. Chem. Phys. Lett. 2009, 481, 214. doi: 10.1016/j.cplett.2009.09.074
(30) Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O'Hayre, R. Energy Environ. Sci. 2010, 3 (10), 1437. doi: 10.1039/c003710a
(31) Wang, S. Y.; Jiang, S. P.;Wang, X.; Guo, J. Electrochimica Acta 2011, 56, 1563. doi: 10.1016/j.electacta.2010.10.055
(32) Zheng, S. F.; Hu, J. S.; Zhong, L. S.;Wan, L. J.; Song,W. G. J. Phys. Chem. C 2007, 111, 11174. doi: 10.1021/jp0727042
(33) Zheng, B.; Zheng,W. T.; Zhang, K.;Wen, Q. B.; Zhu, J. Q.; Meng, S. H.; He, X. D.; Han, J. C. Carbon 2006, 44, 962. doi: 10.1016/j.carbon.2005.10.009

[1] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[2] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[3] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[4] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[5] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[6] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[7] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1715-1726.
[8] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[9] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2117-2123.
[10] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[11] WANG Li-Li, XING Rui-Guang, ZHANG Bang-Wen, HOU Yuan. Preparation and Electrochemical Properties of Functionalized Graphene/Polyaniline Composite Electrode Materials[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1659-1666.
[12] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1180-1186.
[13] WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(4): 708-714.
[14] SONG Gen-Ping, XIA Dong-Xiang. One-Step Preparation of Superhydrophobic Polyaniline/Sodium Dodecylbenzenesulfonate Composites[J]. Acta Phys. Chim. Sin., 2014, 30(3): 583-588.
[15] NAN Guang-Hua, WANG Jian-Ping, WANG Yan, WANG He, LI Wei, ZHANG Xing-Xiang. Preparation and Properties of Nanoencapsulated Phase Change Materials Containing Polyaniline[J]. Acta Phys. Chim. Sin., 2014, 30(2): 338-344.