Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (7): 1303-1308    DOI: 10.3866/PKU.WHXB201405062
CATALYSIS AND SURFACE SCIENCE     
MnOx/CeO2/SiO2 Catalysts Prepared by Adsorption Phase Reaction Technique for Selective Catalytic Reduction of NOx at Low-Temperature
GAO Lin-Xin1, JIANG Xin1, GUO Sen2
1. Department of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China;
2. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
Download:   PDF(915KB) Export: BibTeX | EndNote (RIS)      

Abstract  

MnOx/CeO2/SiO2 catalysts were prepared by the adsorption phase reaction technique and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. HRTEM showed that MnOx and CeO2 particles were uniformly coated on the surface of SiO2. The XRD spectra showed that the intensity of the Mn3O4 diffraction peaks gradually decreased and then completely disappeared with the increasment of the CeO2 content, which indicated that CeO2 reduced the crystallinity of MnOx and improved the dispersibility of MnOx. Raman spectroscopy indicated that Mn ions on the surface of catalysts could enter into the lattice of CeO2, replace oxygen ions, and form oxygen vacancies. With the increasment of CeO2 content, the density of oxygen vacancies initially increased and then decreased. We used the catalysts for selective catalytic reduction (SCR) of NOx with NH3. The catalytic activity initially increased and then decreased with the increasment of CeO2 content, similar to the change in the density of oxygen vacancies. Thus, the catalytic activity of the MnOx/CeO2/SiO2 catalysts increases with increasing the density of oxygen vacancies.



Key wordsMnOx/CeO2/SiO2 catalyst      Low temperature      Selective catalytic reduction      Oxygen vacancies      Adsorption phase reaction technique     
Received: 27 February 2014      Published: 06 May 2014
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21276223), National High-Tech Research and Development Program of China (863) (2010AA064905), and Program for Zhejiang Leading Team of Science & Technology Innovation, China (2009R50020).

Corresponding Authors: JIANG Xin     E-mail: jiangx@zju.edu.cn
Cite this article:

GAO Lin-Xin, JIANG Xin, GUO Sen. MnOx/CeO2/SiO2 Catalysts Prepared by Adsorption Phase Reaction Technique for Selective Catalytic Reduction of NOx at Low-Temperature. Acta Phys. Chim. Sin., 2014, 30(7): 1303-1308.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201405062     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I7/1303

(1) Tang, X. L. Technology and Reaction Mechanism of Selective Catalytic Reduction of NO x at Low-Temperature; Metallurgical Industry Press: Beijing, 2008; pp 20-34. [唐晓龙. 低温选择性催化还原NOx 技术及反应机理. 北京: 冶金工业出版社, 2008: 20-34.]
(2) Burch, R.; Breen, J. P.; Meunier, F. C. Appl. Catal. B 2002, 39, 283. doi: 10.1016/S0926-3373(02)00118-2
(3) Shi, Y.; Pan, H.; Li, Z. J.; Zhang, Y. T.; Li,W. Catal. Commun. 2008, 9, 1356. doi: 10.1016/j.catcom.2007.11.033
(4) Kustov, A. L.; Rasmussen, S. B.; Fehrmann, R.; Simonsen, P. Appl. Catal. B 2007, 76, 9. doi: 10.1016/j.apcatb.2007.05.004
(5) Liu, F. D.; He, H.; Lian, Z. H.; Shan,W. P.; Xie, L. J.; Asakura, K.;Yang,W.W.; Deng, H. J. Catal. 2013, 307, 340. doi: 10.1016/j.jcat.2013.08.003
(6) More, P. M.; Jagtap, N.; Kulal, A. B.; Dongare, M. K.; Umbarkar, S. B. Appl. Catal. B 2014, 144, 408. doi: 10.1016/j.apcatb.2013.07.044
(7) Liu, Z. M.; Zhang, S. X.; Li, J. H.; Ma, L. L. Appl. Catal. B 2014, 144, 90. doi: 10.1016/j.apcatb.2013.06.036
(8) Huang, P.; Pan, S.W.; Huang, B. C.; Cheng, H.; Ye, D. Q.;Wu, J. L.; Fu, M. L.; Lu, S. L. Acta Phys. -Chim. Sin. 2013, 29 (1), 176. [黄萍, 盘思伟, 黄碧纯, 程华, 叶代启, 吴军良, 付名利, 卢圣良. 物理化学学报, 2013, 29 (1), 176.]
(9) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28 (7), 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28 (7), 1771.]
(10) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
(11) Peng, Y.;Wang, C. Z.; Li, J. H. Appl. Catal. B 2014, 144, 538. doi: 10.1016/j.apcatb.2013.07.059
(12) Zhuang, K.; Qiu, J.; Xu, B. L.; Fan, Y. N. Acta Phys. -Chim. Sin. 2012, 28 (3), 681. [庄柯, 裘静, 许波连, 范以宁. 物理化学学报, 2012, 28 (3), 681.]
(13) Qi, G.; Yang, R. T. J. Catal. 2003, 217, 434.
(14) Qi, G.; Yang, R. T.; Chang, R. Appl. Catal. B 2004, 51, 93. doi: 10.1016/j.apcatb.2004.01.023
(15) Jin, R. B. Study on the Supported Mn-Ce Low-Temperature SCR DeNOx Catalysts: Preparation, Reaction Mechanism and SO2 Tolerance. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2010. [金瑞奔. 负载型Mn-Ce 系列低温SCR 脱硝催化剂制备、反应机理及抗硫性能研究[D]. 杭州: 浙江大学, 2010.]
(16) Wang, T.; Jiang, X.;Wu, Y. X. Acta Phys. -Chim. Sin. 2008, 24 (5), 817. [王挺, 蒋新, 吴艳香. 物理化学学报, 2008, 24 (5), 817.]
(17) Wang, T.; Jiang, X.; Mao, C.W. Langmuir 2008, 24, 14042. doi: 10.1021/la802240c
(18) Jiang, X.; Deng, H. Appl. Surf. Sci. 2011, 257 (24), 10883. doi: 10.1016/j.apsusc.2011.07.128
(19) Qi, G.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h
(20) Li, L.; Hu, G. S.; Lu, J. Q.; Luo, M. F. Acta Phys. -Chim. Sin. 2012, 28 (5), 1012. [李岚, 胡庚申, 鲁继青, 罗孟飞. 物理化学学报, 2012, 28 (5), 1012.]
(21) Andreeva, D.; Petrova, P.; Ilieva, L.; Sobczak, J.W.; Abrashev, M. V. Appl. Catal. B 2008, 77, 364. doi: 10.1016/j.apcatb.2007.08.009
(22) Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. J. Mater. Chem. 2001, 11, 900. doi: 10.1039/b007533g
(23) Tikhomirov, K.; Kröcher, O.; Elsener, M.;Wokaun, A. Appl. Catal. B 2006, 64, 72. doi: 10.1016/j.apcatb.2005.11.003
(24) Sun, L.; Xu, Y. J.; Cao, Q. Q.; Hu, B. Q.;Wang, C.; Jing, G. H. Process. Chem. 2010, 22 (10), 1883. [孙亮, 许悠佳, 曹青青, 胡冰清, 王超, 荆国华. 化学进展, 2010, 22 (10), 1883.]
(25) Zhang, R. D.; Yang,W.; Luo, N.; Li, P. X.; Lei, Z. G.; Chen, B. H. Appl. Catal. B 2014, 146, 94. doi: 10.1016/j.apcatb.2013.04.047

[1] SUN Meng-Ting, HUANG Bi-Chun, MA Jie-Wen, LI Shi-Hui, DONG Li-Fu. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1501-1510.
[2] LIU Xiao-Qing, LI Shi-Hui, SUN Meng-Ting, YU Cheng-Long, HUANG Bi-Chun. Preparation, Characterization and Low-Temperature NH3-SCR Activity of MnOx/SAPO-11 Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1236-1246.
[3] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.
[4] YAO Xiao-Jiang, GONG Ying-Tao, LI Hong-Li, YANG Fu-Mo. Research Progress of Ceria-Based Catalysts in the Selective Catalytic Reduction of NOx by NH3[J]. Acta Phys. Chim. Sin., 2015, 31(5): 817-828.
[5] ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Phys. Chim. Sin., 2015, 31(2): 353-359.
[6] ZHANG Yu, WANG Hong-Ning, CHEN Ruo-Yu. In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Acta Phys. Chim. Sin., 2015, 31(2): 329-336.
[7] LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong. Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2366-2374.
[8] CHEN Feng, HUANG Bi-Chun, YANG Ying-Xin, LIU Xiao-Qing, YU Cheng-Long. Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2375-2385.
[9] HAO Teng, WANG Jun, YU Tie, WANG Jian-Qiang, SHEN Mei-Qing. Effect of NO2 on the Selective Catalytic Reduction of NO with NH3 over Cu/SAPO-34 Molecular Sieve Catalyst[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1567-1574.
[10] YU Zai-Lu, XIE Peng-Fei, TANG Xing-Fu, YUE Ying-Hong, HUA Wei-Ming, GAO Zi. Selective Catalytic Reduction of NO with NH3 over MnOx-CeO2-WO3-ZrO2:Effect of Calcination Temperature[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1175-1179.
[11] YANG Chao, LIU Xiao-Qing, HUANG Bi-Chun, WU You-Ming. Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1895-1902.
[12] SHI Lin, YU Tie, WANG Xin-Quan, WANG Jun, SHEN Mei-Qing. Properties and Roles of Adsorbed NH3 and NOx over Cu/SAPO-34 Zeolite Catalyst in NH3-SCR Process[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1550-1557.
[13] XU Yong, JIANG Pei-Wen, LI Quan-Xin. Carbon Nanofibers-Supported Ni Catalyst for Hydrogen Production from Bio-Oil through Low-Temperature Reforming[J]. Acta Phys. Chim. Sin., 2013, 29(05): 1041-1047.
[14] HUANG Ping, PAN Si-Wei, HUANG Bi-Chun, CHENG Hua, YE Dai-Qi, WU Jun-Liang, FU Ming-Li, LU Sheng-Liang. Structural Properties of MnOx/Al-SBA-15 in Low-Temperature Selective Catalytic Reduction of NOx with NH3[J]. Acta Phys. Chim. Sin., 2013, 29(01): 176-182.
[15] LUO Hong-Cheng, HUANG Bi-Chun, FU Ming-Li, WU Jun-Liang, YE Dai-Qi. SO2 Deactivation Mechanism of MnOx/MWCNTs Catalyst for Low-Temperature Selective Catalytic Reduction of NOx by Ammonia[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2175-2182.