Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (7): 1281-1289    DOI: 10.3866/PKU.WHXB201405071
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries
LIU Xin1, XIE Jing-Ying2, ZHAO Hai-Lei1,3, LÜ Peng-Peng1, WANG Ke2, FENG Zhen-He2, WANG Meng-Wei2
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China;
2. Shanghai Institute of Space Power Sources, Shanghai 200245, P. R. China;
3. Beijing Key Laboratory of New Energy Materials and Technology, Beijing 100083, P. R. China
Download:   PDF(2002KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Tin has a theoretical specific capacity as high as 990 mAh·g-1, and is thus a potential anode material for high-energy-density lithium-ion batteries. However, it suffers from a huge volume change during lithiation/delithiation process, leading to poor cycle performance. In this paper, core/shell structured FeSn2-C composites were successfully synthesized by a simple high-energy ball milling technique with Sn, Fe, and graphite powder as raw materials. The FeSn2-C composite was evaluated as an anode material for lithium-ion batteries. The influence of milling time and final phase composition on the microstructure and electrochemical performance of FeSn2-C composites was systematically investigated. The failure mechanism of the FeSn2-C electrode was also analyzed. The results reveal that long milling time can promote the mechanical alloying process of the FeSn2 phase and reduce the particle size of the FeSn2-C composite, which are beneficial for the increase of the specific capacity and the improvement of the cycle performance of the FeSn2-C electrode. A high FeSn2 phase content leads to a high specific capacity of the FeSn2-C composites but poor cycling stability of the electrode. The optimized Sn20Fe10C70 composite prepared by ball milling for 24 h (500 r ·min-1) shows the best electrochemical performance with a capacity about 540 mAh·g-1 for 100 cycles. The synthesized Sn20Fe10C70 composite is a promising anode material for highenergy-density lithium-ion batteries.



Key wordsFeSn2-C composite      Phase composition      High-energy ball milling      Anode material      Lithium-ion battery     
Received: 10 February 2014      Published: 07 May 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273019), National Key Basic Research Program of China (973) (2013CB934003), National High Technology Research and Development Program of China (863) (2013AA050902), Shanghai Science and Technology Talent Project Funds, Chian (12XD1421900), and Shanghai Science and Technology Development Funds, China (12dz1200503, 13dz2280200).

Corresponding Authors: XIE Jing-Ying, ZHAO Hai-Lei     E-mail: xiejingying2007@126.com;hlzhao@ustb.edu.cn
Cite this article:

LIU Xin, XIE Jing-Ying, ZHAO Hai-Lei, Lü Peng-Peng, WANG Ke, FENG Zhen-He, WANG Meng-Wei. Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(7): 1281-1289.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201405071     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I7/1281

(1) Zhamu, A.; Chen, G.; Liu, C.; Neff, D.; Fang Q.; Yu, Z.; Xiong, W.;Wang, Y.;Wang, X.; Jang, B. Z. Energy & Environ. Sci. 2012, 5, 5701.
(2) Chang, Y. Q.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26, 561. [常玉清, 黄令, 孙世刚. 物理化学学报, 2010, 26, 561.]
(3) Guo, H.; Zhao, H.; Jia, X.; Li, X.; Qiu,W. Electrochim. Acta 2007, 52, 4853.
(4) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. J. Alloy. compd. 2013, 575, 246.
(5) Liu, X.; Xie, J. Y.; Zhao, H. L.;Wang, K.; Tang,W. P.; Pan, Y. L.; Feng, Z. H.; LÜ, P. P. Acta Chim. Sin. 2013, 71, 1011. [刘欣, 解晶莹, 赵海雷, 王可, 汤卫平, 潘延林, 丰震河, 吕鹏鹏. 化学学报, 2013, 71, 1011]
(6) Zhang,W. J. J. Power Sources 2011, 196, 13.
(7) Todd, A. D.W.; Mar, R. E.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1998.
(8) Guo, H.; Zhao, H.; Jia, X. Electrochem. Commun. 2007, 9, 2207.
(9) Fan, X. Y.; Zhuang, Q. C.;Wei, G. Z.; Ke, F. S.; Huang, L.; Dong, Q. F.; Sun, S. G. Acta Phys. -Chim. Sin. 2009, 25, 611. [樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚. 物理化学学报, 2009, 25, 611.]
(10) Zhang,W. J. J. Power Sources 2011, 196, 877.
(11) Ferguson, P. P.; Todd, A. D.W.; Dahn, J. R. Electrochem. Commun. 2008, 10, 25.
(12) Jung, H. R.;Wan, J. L. J. Electrochem. Soc. 2011, 158, A644.
(13) Mao, O.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 405.
(14) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 414.
(15) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 423.
(16) Yoon, S.; Lee, J. M.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H. J. Electrochim. Acta 2009, 54, 2699.
(17) Lee, J. M.; Jung, H.; Hwa, Y.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H.J. J. Power Sources 2010, 195, 5044.
(18) Ferguson, P. P.; Liao, P.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 2009, 156, A13.
(19) Holzwarth, U.; Gibson, N. Nat. Nanotechnol. 2011, 6, 534.
(20) Todd, A. D.W.; Ferguson, P. P.; Fleischauer, M. D.; Dahn, J. R. Int. J. Energy Res. 2010, 34, 535.
(21) Chamas, M.; Lippens, P. E.; Jumas, J. C.; Boukerma, K.; Dderyvere, R.; Gonbeau, D.; Hassoun, J.; Panero, S.; Scrosati, B. J. Power Sources 2011, 196, 7011.
(22) Zhang, C. Q.; Tu, J. P.; Huang, X. H.; Yuan, Y. F.;Wang, S. F.; Mao, F. J. Alloy. Compd. 2008, 457, 81.

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[10] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2127-2132.
[11] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[12] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2280-2286.
[13] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1699-1707.