Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (8): 1535-1542    DOI: 10.3866/PKU.WHXB201405221
CATALYSIS AND SURFACE SCIENCE     
Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition
ZHANG Jian-Fang1,3, WANG Yan2,3, SHEN Tian-Kuo2,3, SHU Xia2,3, CUI Jie-Wu2,3, CHEN Zhong2,4, WU Yu-Cheng2,3
1. School of Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China;
2. School of Materials Science & Engineering, Hefei University of Technology, Hefei 230009, P. R. China;
3. Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, P. R. China;
4. School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Download:   PDF(1607KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Highly ordered TiO2 nanotube arrays (TNAs) were fabricated by an electrochemical anodization process and Cu2O nanoparticles were subsequently deposited onto these TNAs via pulse deposition to form Cu2O/TiO2 nanotube heterojunction composite materials. Samples were characterized by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffusion reflection spectroscopy (DRS). The photocatalytic performances of the Cu2O/TiO2 composites were investigated by following the visible-light induced photocatalytic decomposition of methyl orange (MO). The results indicated that the inner surfaces and interfaces of the TNAs had been successfully modified with uniformly distributed Cu2O nanoparticles, and that these composites could effectively improve the visible light photocatalytic performance. The Cu2O/TiO2 nanotube composite obtained using 0.01 mol·L-1 CuSO4 solution exhibited the best photocurrent and photocatalytic performance. Based on the results obtained, a possible photocatalytic mechanism is also discussed.



Key wordsTiO2 nanotube array      Pulse deposition      Cu2O/TiO2 nanotube heterojunction      Photoelectrochemical property      Photocatalysis     
Received: 21 March 2014      Published: 22 May 2014
MSC2000:  O648  
  TB34  
Fund:  

The project was supported by the National Natural Science Foundation of China (51302060, 51128201, 51272062, 51311130317), Specialized Research Fund for the Doctoral Program of Higher Education, China (20130111120019), Natural Science Foundation of Anhui Province, China (1308085QE74), and Fundamental Research Funds for the Central Universities, China (2012HGBZ0648).

Corresponding Authors: WANG Yan, WU Yu-Cheng     E-mail: stone@hfut.edu.cn;ycwu@hfut.edu.cn
Cite this article:

ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition. Acta Phys. Chim. Sin., 2014, 30(8): 1535-1542.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201405221     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I8/1535

(1) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s
(2) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8, 76. doi: 10.1038/nmat2317
(3) Chen, C. C.; Ma,W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39, 4206. doi: 10.1039/b921692h
(4) Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. doi: 10.1002/smll.200600426
(5) Khan, S. U. M.; Al-Shahry, M.; Ingler,W. B., Jr. Science 2002, 297, 2243. doi: 10.1126/science.1075035
(6) Yin, S.; Zhang, Q.W.; Saito, F.; Sato, T. Chem. Lett. 2003, 32, 358. doi: 10.1246/cl.2003.358
(7) Sun, C.; Huang, L. H.; Liu, Y. L. J. Funct. Mater. 2005, 36, 1412. [孙超, 黄浪欢, 刘应亮. 功能材料, 2005, 36, 1412.]
(8) Zhang, J. L.;Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K. Energy Environ. Sci. 2010, 3, 715. doi: 10.1039/b927575d
(9) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231
(10) Chen, Y. J.; Tian, G. H.; Pan, K.; Tian, C. G.; Zhou, J.; Ren, Z. Y.; Fu, H. G. Dalton Trans. 2012, 41, 1020. doi: 10.1039/c1dt11540e
(11) Bian, H. D.; Shu, X.; Zhang, J. F.; Yuan, B.;Wang, Y.; Liu, L. J.; Xu, G. Q.; Chen, Z.;Wu, Y. C. Chem. Asia J. 2013, 8, 2746. doi: 10.1002/asia.201300438
(12) Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19, 805. doi: 10.1002/adfm.200801173
(13) Yang, L. X.; Luo, S. L.; Liu, R. H.; Cai, Q. Y.; Xiao, Y.; Liu, S. H.; Su, F.;Wen, L. F. J. Phys. Chem. C 2010, 114, 4783.
(14) Xue, F.;Wang, L.; Xue, J. J.; Bao, Z. G.; Tao, H. J.; Cao, Z. B. Rare Met. Mater. Eng. 2009, 38, 1238. [薛峰, 王玲, 薛建军, 包祖国, 陶海军, 曹志斌. 稀有金属材料与工程, 2009, 38, 1238.]
(15) Dai, G. P.; Liu, S. Q.; Peng, R.; Luo, T. X. Acta Phys. -Chim. Sin. 2012, 28, 2169. [戴高鹏, 刘素芹, 彭荣, 罗天雄. 物理化学学报, 2012, 28, 2169.] doi: 10.3866/PKU.WHXB201207041
(16) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
(17) Gao, X. F.; Li, H. B.; Sun,W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. J. Phys. Chem. C 2009, 113, 7531. doi: 10.1021/jp810727n
(18) Gao, S.W.; Lan, Z.;Wu,W. X.; Que, L. F.;Wu, J. H.; Lin, J. M.; Huang, M. L. Acta Phys. -Chim. Sin. 2014, 30, 446. [高素雯, 兰章, 吴晚霞, 阙兰芳, 吴季怀, 林建明, 黄妙良. 物理化学学报, 2014, 30, 446.] doi: 10.3866/PKU.WHXB201403171
(19) Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202. doi: 10.1002/adfm.201102263
(20) Huang, Y. Z.; Miao, H.; Zhang, Q. H.; Chen, C.; Xu, J. Catal. Lett. 2008, 122, 344. doi: 10.1007/s10562-007-9386-0
(21) Guan, L.; Pang, H.;Wang, J. J.; Lu, Q. Y.; Yin, J. Z.; Gao, F. Chem. Commun. 2010, 46, 7022. doi: 10.1039/c0cc02331k
(22) Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803. doi: 10.1002/adma.200800596
(23) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 297. [罗小林, 韩银凤, 杨德锁, 陈亚芍. 物理化学学报, 2012, 28, 297.] doi: 10.3866/PKU.WHXB201112012
(24) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u
(25) Mor, G. K.; Varghese, O. K.;Wilke, R. H. T.; Sharma, S.; Shankar, K.; Latempa, T. J.; Choi, K. S.; Grimes, C. A. Nano Lett. 2008, 8, 1906. doi: 10.1021/nl080572y
(26) Xue, J. B.; Shen, Q. Q.; Li, G. L.; Liang,W. Chin. J. Inorg. Chem. 2013, 29, 729. [薛晋波, 申倩倩, 李光亮, 梁伟. 无机化学学报, 2013, 29, 729.]
(27) Zhang, S. S.; Zhang, S. Q.; Peng, F.; Zhang, H. M.; Liu, H.W.; Zhao, H. J. Electrochem. Commun. 2011, 13, 861. doi: 10.1016/j.elecom.2011.05.022
(28) Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. Energy Environ. Sci. 2013, 6, 1211. doi: 10.1039/c3ee24162a
(29) McLntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, 2208. doi: 10.1021/ac60363a034
(30) Jin, S.; Atrens, A. Appl. Phys. A 1987, 42, 149. doi: 10.1007/BF00616726
(31) Kou, T. Y.; Jin, C. H.; Zhang, C.; Sun, J. Z.; Zhang, Z. H. RSC Adv. 2012, 2, 12636. doi: 10.1039/c2ra21821f

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2042-2051.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[6] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[9] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[10] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[11] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[12] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[13] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[14] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[15] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.