Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (3): 439-445    DOI: 10.3866/PKU.WHXB201401141
Effects of External Field and Nanoribbon Length on the Electronic Structure and Properties of Graphene Nanoribbons
SUN Jin1, LIANGWan-Zhen2
1 School of Physics and Materials Science, Anhui University, Hefei 230039, P. R. China;
2 Department of Chemistry, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(3045KB) Export: BibTeX | EndNote (RIS)      


We investigated the ground and excited state electronic properties of finite length zigzag graphene nanoribbons, using time-dependent density functional theory. The ground state of short graphene nanoribbons with eight Hatoms on their armchair edges (8-ZGNR) is diamagnetic, and antiferromagnetismcan be exhibited with increasing the length of nanoribbons. The antiferromagnetismand half-metallicity can also be shown when a static field is added. When a laser pulse is applied in the excited state, the induced electrons can move and change with the laser pulse. There exist some differences between α- and β-spin electrons. α-Spin electrons can be induced, and showinduced charge density more readily. β-Spin electrons can escape the external field control, and show non-adiabatic properties more readily.

Key wordsGraphene nanoribbon      Time-dependent density functional theory      Spin density;      Induce density      Laser external field     
Received: 09 October 2013      Published: 14 January 2014
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21103001) and Research Fund for the Doctoral Programof Higher Education of China (20113401120004)

Corresponding Authors: SUN Jin     E-mail:
Cite this article:

SUN Jin, LIANGWan-Zhen. Effects of External Field and Nanoribbon Length on the Electronic Structure and Properties of Graphene Nanoribbons. Acta Phys. Chim. Sin., 2014, 30(3): 439-445.

URL:     OR

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. doi: 10.1038/nature04233
(3) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04235
(4) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451. doi: 10.1073/pnas.0502848102
(5) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. doi: 10.1126/science.1137201
(6) Zhang, Y.; Small, J. P.; Pontius, W. V.; Kim, P. Appl. Phys. Lett. 2005, 86, 073104. doi: 10.1063/1.1862334
(7) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z,; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912. doi: 10.1021/jp040650f
(8) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006, 73, 125411. doi: 10.1103/PhysRevB.73.125411
(9) Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2005, 95, 226801. doi: 10.1103/PhysRevLett.95.226801
(10) Pereira, V. M.; Guinea, F.; Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Phys. Rev. Lett. 2006, 96, 036801. doi: 10.1103/PhysRevLett.96.036801
(11) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖,欧阳俊, 欧阳方平.物理化学学报, 2011, 27, 1103.] doi: 10.3866/PKU.WHXB20110345
(12) Li, Y. X.; Wei, Z. D.; Zhao, Q. L.; Ding, W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2010, 26, 1570. [李云霞,魏子栋, 赵巧玲,丁炜,张骞,陈四国.物理化学学报, 2010, 26, 1570.] doi: 10.3866/PKU.WHXB20100620
(13) Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟,张卉, 吴萍,蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(14) Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Räder, H. J.; Müllen, K. J. Am. Chem. Soc. 2008, 130, 4216. doi: 10.1021/ja710234t
(15) Son, Y.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803. doi: 10.1103/PhysRevLett.97.216803
(16) Son, Y. W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347. doi: 10.1038/nature05180
(17) Jiang, D.; Sumpter, B. G.; Dai, S. J. Chem. Phys. 2007, 127, 124703. doi: 10.1063/1.2770722
(18) Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Nano Lett. 2007, 7, 2295. doi: 10.1021/nl0708922
(19) Rudberg, E.; Selek, P.; Luo, Y. Nano Lett. 2007, 7, 2211. doi: 10.1021/nl070593c
(20) Hod, O.; Barone, V.; Scuseria, G. E. Phys. Rev. B 2008, 77, 035411. doi: 10.1103/PhysRevB.77.035411
(21) Xu, B.; Yin, J.; Xia, Y. D.; Wan, X. G.; Jiang, K.; Liu, Z. G. Appl. Phys. Lett. 2010, 96, 163102. doi: 10.1063/1.3402762
(22) Fradkin, E. Phys. Rev. B 1986, 33, 3263. doi: 10.1103/PhysRevB.33.3263
(23) Zhang, C.; Chen, L.; Ma, Z. Phys. Rev. B 2008, 77, 241402. doi: 10.1103/PhysRevB.77.241402
(24) Stauber, T.; Peres, N. M. R.; Geim, A. K. Phys. Rev. B 2008, 78, 085432. doi: 10.1103/PhysRevB.78.085432
(25) Cserti, J.; Csordas, A.; David, G. Phys. Rev. Lett. 2007, 99, 066802. doi: 10.1103/PhysRevLett.99.066802
(26) Wright, A. R.; Liu, F.; Zhang, C. Nanotechnology 2009, 20, 405203.
(27) Liu, J.; Wright, A. R.; Zhang, C.; Ma, Z. Appl. Phys. Lett. 2008, 93, 041106. doi: 10.1063/1.2964093
(28) Lu, J. Q.; Zhang, X. G.; Pantelides, S. T. Phys. Rev. B 2009, 79, 073408. doi: 10.1103/PhysRevB.79.073408
(29) Zhao, Z. Y.; Zhai, X. C.; Jin, G. J. Appl. Phys. Lett. 2012, 101, 083117. doi: 10.1063/1.4748110
(30) Zhang, G. P. Phys. Rev. Lett. 2005, 95, 047401. doi: 10.1103/PhysRevLett.95.047401
(31) Gordon, A.; Kartner, F. X; Rohringer, N.; Santra, R. Phys. Rev. Lett. 2006, 96, 223902. doi: 10.1103/PhysRevLett.96.223902
(32) Onida, G.; Reining, L.; Rubio, A. Rev. Mod. Phys. 2002, 74, 601. doi: 10.1103/RevModPhys.74.601
(33) Suzuki, M.; Mukamel, S. J. Chem. Phys. 2003, 119, 4722. doi: 10.1063/1.1594721
(34) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in Fortran 90; Cambridge University Press: Cambridge, 1996.
(35) Li, X.; Smith, S. M.; Markevitch, A. N.; Romanov, D. A.; Levis, R. J.; Schlegel, H. B. Phys. Chem. Chem. Phys. 2005, 7, 233. doi: 10.1039/b415849k
(36) Sun, J.; Song, J.; Zhao, Y.; Liang, W. Z. J. Chem. Phys. 2007, 127, 234107. doi: 10.1063/1.2805396
(37) Sun, J.; Guo, Z. Y.; Liang, W. Z. Phys. Rev. B 2007, 75, 195438. doi: 10.1103/PhysRevB.75.195438
(38) Sun, J.; Liang, W. Z.; Liu, J. J. Theo. Comp. Chem. 2008, 7, 579. doi: 10.1142/S0219633608003976
(39) Sun, J.; Liu, J.; Liang, W. Z.; Zhao, Y. J. Phys. Chem. A 2008, 112, 10442. doi: 10.1021/jp804408a
(40) Sun, J.; Liang, W. Z.; Yang, J. L.; Gao, J. S. J. Mol. Struct. -Theochem 2005, 755, 105. doi: 10.1016/j.theochem.2005.07.030
(41) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O′Neill, D. P.; DiStasio, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K., Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172. doi: 10.1039/b517914a

[1] SUN Hai-Tao, ZHONG Cheng, SUN Zhen-Rong. Recent Advances in the Optimally “Tuned” Range-Separated Density Functional Theory[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2197-2208.
[2] YIN Hai-Feng. Plasmon Excitations in Silicene Quantum Dot Dimers[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1446-1452.
[3] YE Chuan-Xiang, MA Hui-Li, LIANG Wan-Zhen. Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation[J]. Acta Phys. Chim. Sin., 2016, 32(1): 301-312.
[4] HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1504-1512.
[5] YIN Hai-Feng, XIANG Gong-Zhou, YUE Li, ZHANG Hong. Plasmon Excitation in Silicene Quantum Dots[J]. Acta Phys. Chim. Sin., 2015, 31(1): 67-72.
[6] YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1049-1054.
[7] CHEN Xi-Ming, JIA Chun-Yang, WAN Zhong-Quan, YAO Xiao-Jun. Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2014, 30(2): 273-280.
[8] LING Huan-Huan, LI Nan, YANG Fan, JI Xin, XIA Yong, CAO Du, QI Zheng-Jian. Photoelectric Properties of Novel Substituted 2-Phenyl-1H-imidazole[4,5-f][1,10]phenanthrene Ruthenium(II) Complexes[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2465-2474.
[9] ZHOU Dan-Hong, LI Miao-Miao, CUI Li-Li. Photophysical Properties and Photoinduced Electron Transfer Mechanism in a Near-IR Fluorescent Probe for Monitoring Peroxynitrite[J]. Acta Phys. Chim. Sin., 2013, 29(07): 1453-1460.
[10] WANG Feng-Jiao, ZHOU Dan-Hong, ZUO Shi-Ying, CAO Jian-Fang, PENG Xiao-Jun. Theoretical Calculations on the PET Property of BODIPY Fluorescent pH Probes[J]. Acta Phys. Chim. Sin., 2012, 28(07): 1645-1650.
[11] LIU Xiao-Jun, LIN Tao, GAO Shao-Wei, MA Rui, ZHANG Jin-Yue, CAI Xin-Chen, YANG Lei, TENG Feng. TDDFT Investigation and Design for Fluorescent Molecules with Push-Pull Structures[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1337-1346.
[12] LIU Xiao-Jun, LIN Tao, CAI Xin-Chen, GAO Shao-Wei, YANG Lei, MA Rui, ZHANG Jin-Yue. State-Specific (Linear-Response)-Polarizable Continuum Models/ Time-Dependent Density Functional Theory Study on the Absorption and Emission Spectra of an Organic Fluorescent Emitter[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1329-1336.
[13] GU Jia-Fang, LU Chun-Hai, CHEN Wen-Kai, CHEN Yong, XU Ke, HUANG Xin, ZHANG Yong-Fan. Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase[J]. Acta Phys. Chim. Sin., 2012, 28(04): 792-798.
[14] ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2012, 28(01): 78-84.
[15] LIU Xiao-Jun, WANG Ning, CHENG Hao . Local and Long-Range Hybrid Density Functional Study on an Organic Light-Emitting Molecule with Pull-Push Structure[J]. Acta Phys. Chim. Sin., 2011, 27(07): 1640-1646.