Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (8): 1481-1486    DOI: 10.3866/PKU.WHXB201405303
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery
HUA Wei-Bo1, ZHENG Zhuo1, LI Long-Yan1, GUO Xiao-Dong1, LIU Heng2, SHEN Chong-Heng3, WU Zhen-Guo1,3, ZHONG Ben-He1, HUANG Ling3
1. Phosphorus Resources Comprehensive Utilization & Clean Processing Center of Ministry of Education, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;
2. School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China;
3. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(936KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We report on an ammonia-evaporation-induced synthetic method for nanostructured LiNi1/3Co1/3Mn1/3O2 cathode material. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high- resolution transmission electron microscopy (HRTEM), energy- dispersive X- ray spectroscopy (EDS), Brunauer-Emmett-Teller nitrogen sorption, and galvanostatic charge-discharge tests were applied to analyze the crystal structure, micromorphology, and electrochemical properties of nanostructured LiNi1/3Co1/3Mn1/3O2. The results show that it has a well-ordered layered α-NaFeO2 with little cation mixing. Awalnutkernel- like morphology is formed by nanosheets, leading to a nanoporous material. The lateral plane of nanosheets are {010}-faceted, which could provide multiple channels for Li+-ion migration. The electrochemical properties of the lithium cells used this material as cathode are excellent: the specific discharge capacity at 0.5C,1C, 3C, 5C and 10C is, respectively, up to 172.90, 153.95, 147.09, 142.16, and 131.23 mAh·g-1 between 3.0 and 4.6 V at room temperature. These excellent features will make the nanostructured LiNi1/3Co1/3Mn1/3O2 become a positive electrode material of potential interest for useful applications, such as in electric vehicles and hybrid electric vehicles.



Key wordsLithium-ion battery      Cathode material      LiNi1/3Co1/3Mn1/3O2      Nanostructure      Ammonia-evaporation-induced synthetic method      Electrochemical property     
Received: 23 April 2014      Published: 30 May 2014
MSC2000:  O646  
Fund:  

The project was supported by the Sichuan University Funds for Young Scientists, China (2011SCU11081) and Research Fund for the Doctoral Program of Higher Education, the Ministry of Education, China (20120181120103).

Corresponding Authors: GUO Xiao-Dong     E-mail: xiaodong2009@scu.edu.cn
Cite this article:

HUA Wei-Bo, ZHENG Zhuo, LI Long-Yan, GUO Xiao-Dong, LIU Heng, SHEN Chong-Heng, WU Zhen-Guo, ZHONG Ben-He, HUANG Ling. Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery. Acta Phys. Chim. Sin., 2014, 30(8): 1481-1486.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201405303     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I8/1481

(1) Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.;Walker, W.; Prakash, A. S.; Hassine, M. B.; Dupont, L.; Tarascon, J. M. Nat. Mater. 2013, 12, 827. doi: 10.1038/nmat3699
(2) Wang, F.; Xiao, S.; Chang, Z.; Yang, Y.;Wu, Y. Chem. Commun. 2013, 49, 9209. doi: 10.1039/c3cc44360d
(3) Zhong, Y. J.; Li, J. T.;Wu, Z. G.; Zhong, B. H.; Guo, X. D.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2013, 29, 1989. [钟艳君, 李君涛, 吴振国, 钟本和, 郭孝东, 黄令, 孙世刚. 物理化学学报, 2013, 29, 1989.] doi: 10.3866/PKU.WHXB201306181
(4) Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977. doi: 10.1126/science.1122152
(5) Ban, C.; Li, Z.;Wu, Z.; Kirkham, M. J.; Chen, L.; Jung, Y. S.; Payzant, E. A.; Yan, Y.; Whittingham, M. S.; Dillon, A. C. Adv. Energy Mater. 2011, 1, 58. doi: 10.1002/aenm.201000001
(6) Hu, C. Y.; Guo, J.; Du, Y.; Xu, H. H.; He, Y. H. Trans. Nonferrous Met. Soc. China 2011, 21, 114. doi: 10.1016/S1003-6326(11)60686-9
(7) Yin, K.; Fang,W.; Zhong, B.; Guo, X.; Tang, Y.; Nie, X. Electrochim. Acta 2012, 85, 99. doi: 10.1016/j.electacta.2012.06.064
(8) Xu, Z.; Xiao, L.;Wang, F.;Wu, K.; Zhao, L.; Li, M. R.; Zhang, H. L.;Wu, Q.;Wang, J. J. Power Sources 2014, 248, 180-189. doi: 10.1016/j.jpowsour.2013.09.064
(9) Wang, H. Y. Chin. J. Inorg. Chem. 2008, 24, 593. [王海燕. 无机化学学报, 2008, 24, 593.]
(10) Zhong, H.; Xu, H. Acta Chim. Sin. 2007, 67, 147. [钟辉, 许惠. 化学学报, 2007, 67, 147.]
(11) Zhang, S.; Qiu, X.; He, Z.;Weng, D.; Zhu,W. J. Power Sources 2006, 153, 350. doi: 10.1016/j.jpowsour.2005.05.021
(12) Lu, J.; Peng, Q.;Wang,W.; Nan, C.; Li, L.; Li, Y. J. Am. Chem. Soc. 2013, 135, 1649. doi: 10.1021/ja308717z
(13) Li, J. B.; Xu, Y. L.; Du, X. F.; Sun, X. F.; Xiong, L. L. Acta Phys. -Chim. Sin. 2012, 28, 1899. [李节宾, 徐友龙, 杜显锋,孙孝飞, 熊礼龙. 物理化学学报, 2012, 28, 1899.] doi: 10.3866/PKU.WHXB201205152
(14) Fu, F.; Xu, G. L.;Wang, Q.; Deng, Y. P.; Li, X.; Li, J. T.; Huang, L.; Sun, S. G. J. Mater. Chem. A 2013, 1, 3860.
(15) Li, J.; Cao, C.; Xu, X.; Zhu, Y.; Yao, R. J. Mater. Chem. A 2013, 1, 11848. doi: 10.1039/c3ta12375h
(16) Li, Y.; Tan, B.;Wu, Y. Chem. Mater. 2008, 20, 567. doi: 10.1021/cm070784g
(17) Li, Y.; Tan, B.;Wu, Y. J. Am. Chem. Soc. 2006, 128, 14258. doi: 10.1021/ja065308q
(18) Cho, Y.; Oh, P.; Cho, J. Nano Lett. 2013, 13, 1145. doi: 10.1021/nl304558t
(19) Zhang, X.; Jiang,W. J.; Mauger, A.; Qilu, G. F.; Julien, C. M. J. Power Sources 2010, 195, 1292. doi: 10.1016/j.jpowsour.2009.09.029
(20) Koyama, Y.; Yabuuchi, N.; Tanaka, I.; Adachi, H.; Ohzuku, T. J. Electrochem. Soc. 2004, 151, A1545.
(21) Huang, Z. D.; Liu, X. M.; Oh, S.W.; Zhang, B.; Ma, P. C.; Kim, J. K. J. Mater. Chem. 2011, 21, 10777. doi: 10.1039/c1jm00059d
(22) Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.;Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.201001578
(23) Zhang, X.; Shi,W.; Zhu, J.; Zhao,W.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y.; Zhang, H.; Hng, H. H.; Yan, Q. Nano Research 2010, 3, 643. doi: 10.1007/s12274-010-0024-6
(24) Mei, T.; Zhu, Y.; Tang, K.; Qian, Y. RSC Adv. 2012, 2, 12886. doi: 10.1039/c2ra21392c
(25) Xu, J.; Chou, S. L.; Gu, Q. F.; Liu, H. K.; Dou, S. X. J. Power Sources 2013, 225, 172. doi: 10.1016/j.jpowsour.2012.10.033
(26) Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Nano Energy 2013, 2, 1249. doi: 10.1016/j.nanoen.2013.06.003
(27) Holland, C. E.;Weinber, J.W.; Dougal, R. A.; White, R. E. J. Power Sources 2002, 109, 32. doi: 10.1016/S0378-7753(02)00044-7
(28) Shaju, K. M.; Bruce, P. G. Adv. Mater. 2006, 18, 2330. doi: 10.1002/adma.200600958
(29) Zhu, Z.; Yan, H.; Zhang, D.; Li,W.; Lu, Q. J. Power Sources 2013, 224, 13. doi: 10.1016/j.jpowsour.2012.09.043

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.