Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (8): 1474-1480    DOI: 10.3866/PKU.WHXB201406041
One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites
LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
Download:   PDF(1093KB) Export: BibTeX | EndNote (RIS)      


Reduced graphene oxide/sulfur (RGO/S) composites were synthesized by a one-step hydrothermal method using a mixture of sodium thiosulfate (Na2S2O3) and graphene oxide (GO) solution reacting under acid conditions. We explored the influence of the hydrothermal temperature, reaction time, and sulfur content on the composites. Analysis by X-ray diffraction (XRD), scanning electron microscope (SEM), and the galvanostatic charge and discharge shows that the composites have excellent cycling performance when synthesis occurs at 180 ℃ for 12 h to provide a carbon:sulfur mass ratio of 3:7. The first discharge capacity is delivered at 931 mAh·g-1 and it remains at 828.16 mAh·g-1 after 50 cycles. The coulomb efficiency of the composites is above 95%. In addition, the rate capability of these composites is much better than that of sulfur. Sulfur molecules can be evenly distributed between the graphene layers and fixed to the functional groups on the surface of graphene by this one-step hydrothermal method.

Key wordsLithium-sulfur battery      Graphene      Hydrothermal method      Sodium thiosulfate     
Received: 21 March 2014      Published: 04 June 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51104184).

Corresponding Authors: LI Ya-Juan     E-mail:
Cite this article:

LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites. Acta Phys. Chim. Sin., 2014, 30(8): 1474-1480.

URL:     OR

(1) Nagaura, T.; Tozawa, K. Prog. Batte. Solar Cells 1990, 9, 209.
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(3) Dean, J. A. Lange's Handbook of Chemistry, 3rd ed.; McGraw-Hill: New York, 1985; pp 3-5.
(4) He, X. M.; Pu,W. H.; Ren, J. G.;Wang, L.;Wang, J. L.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 7372. doi: 10.1016/j.electacta.2007.06.016
(5) Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. J. Electrochem. Soc. 2003, 150, 889. doi: 10.1149/1.1576766
(6) Zheng,W.; Liu, Y.W.; Hu, X. G.; Zhang, C. F. Electrochim. Acta 2006, 51, 1330. doi: 10.1016/j.electacta.2005.06.021
(7) Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu,W. J. Power Sources 2009, 189, 1141. doi: 10.1016/j.jpowsour.2008.12.149
(8) Chen, J. J.; Jia, X.; She, Q. J.;Wang, C.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Electrochim. Acta 2010, 55, 8062. doi: 10.1016/j.electacta.2010.01.069
(9) Li, S.; Xie, M.; Liu, J. B.;Wang, H.; Yan, H. J. Electrochem. Solid-State Lett. 2011, 14, A105.
(10) Ji, X.; Lee, K. T.; Nazar, L. F. Nature Mater. 2009, 8, 500. doi: 10.1038/nmat2460
(11) Li, X. L.; Cao, Y. L.; Qi,W.; Saraf, V. L.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. J. Mater. Chem. 2011, 21, 16603. doi: 10.1039/c1jm12979a
(12) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29, 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29, 546.] doi: 10.3866/PKU.WHXB201301081
(13) Fu, Y.; Manthiram, A. J. Phys. Chem. C 2012, 116, 8910. doi: 10.1021/jp305718z
(14) Guo, J. C.; Yang, Z. C.; Yu, Y. C.; Abruna, H. D.; Archer, L. A. J. Am. Chem. Soc. 2013, 135, 763. doi: 10.1021/ja309435f
(15) Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Electrochim. Acta 2012, 83, 78. doi: 10.1016/j.electacta.2012.07.118
(16) Li, Y. J.; Zhan, H.; Kong, L. B.; Zhan, C. M.; Zhou, Y. H. Electrochem. Commun. 2007, 9, 1217. doi: 10.1016/j.elecom.2007.01.016
(17) Wang,W. K.;Wang, A. B.; Cao, G. P.; Yang, Y. S. Acta Phys. -Chim. Sin. 2004, 20, 1440. [王维坤, 王安邦, 曹高萍, 杨裕生. 物理化学学报, 2004, 20, 1440.] doi: 10.3866/PKU.WHXB20041208
(18) Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu,W. C.; Qian,W. Z.;Wei, F. Nano Energy 2013, 2, 314. doi: 10.1016/j.nanoen.2012.10.003
(19) Kim, K. H.; Jun, Y. S.; Gerbec, J. A.; See, K. A.; Stucky, G. D.; Jung, H. T. Carbon 2014, 69, 543. doi: 10.1016/j.carbon.2013.12.065
(20) Zhou,W. D.; Chen, H.; Yu, Y. C.;Wang, D. L.; Cui, Z. M.; DiSalvo, F. J.; Abruna, H. D. ACS Nano 2013, 7, 8801.
(21) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chemistry of Materials 2009, 21, 2950. doi: 10.1021/cm9006603
(22) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(23) Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342. doi: 10.1016/j.carbon.2006.06.004
(24) Yu, J. G.;Wang, G. H.; Cheng, B.; Zhou, M. H. Journal of Applied Catalysis 2007, 69, 171. doi: 10.1016/j.apcatb.2006.06.022
(25) Li, Y. J.; Zhan, H.; Liu, S. Q.; Huang, K. L.; Zhou, Y. H. J. Power Sources 2010, 195, 2945. doi: 10.1016/j.jpowsour.2009.11.004

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[8] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[9] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[10] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[11] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[12] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[13] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[14] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2339-2358.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.