Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (8): 1543-1549    DOI: 10.3866/PKU.WHXB201406161
CATALYSIS AND SURFACE SCIENCE     
Microwave-Assisted Solvothermal Synthesis of In-Si Co-Modified TiO2 Photocatalysts with Enhanced Photocatalytic Activity
TIAN Hong1, WANG Hui-Xiang1, SHI Wei-Mei2, XU Yao1
1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China;
2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
Download:   PDF(742KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In-Si co-modified TiO2 photocatalysts were synthesized via a microwave-assisted solvothermal method. The obtained materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 addesorption (BET), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UVVis diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalysts all exist in an anatase phase, despite the fact that the crystallinity slightly decreased upon modification of the TiO2 photocatalysts. Si-modification resulted in smaller nanoparticles and larger specific surface areas. In-modification led to the formation of In2O3 on the surface of TiO2, such that In cannot enter the TiO2 lattice, contributing to efficient charge transfer between the coupled semiconductors In2O3 and TiO2. Degradation of Rhodamine B (RhB) showed that In-Si co-modified TiO2 photocatalysts can exhibit high photocatalytic activity under both ultraviolet and visible light. The highest activity was obtained for In-Si co-modified TiO2 with an Si:In:Ti molar ratio of 0.03:0.02:1 (IST-2), with which RhB was completely degraded within 3 min under ultraviolet light and where 97% of RhB was degraded after 120 min under visible light. The improved photocatalytic activity of In- Si co-modified TiO2 may be ascribed to synergistic effects between large surface area, efficient electron transmission at the In2O3-TiO2 interface, and the dye sensation effect of RhB. Photodegradation for colorless phenol occurred at a much slower rate than that for RhB, and the phenol did not completely degrade within 700 min.



Key wordsTiO2      In2O3      Photocatalysis      Modification      Doping     
Received: 13 February 2014      Published: 16 June 2014
MSC2000:  O643  
Fund:  

The project was supported by the Natural Science Foundation of Shanxi Province, China (2011011007-3).

Corresponding Authors: XU Yao     E-mail: xuyao@sxicc.ac.cn
Cite this article:

TIAN Hong, WANG Hui-Xiang, SHI Wei-Mei, XU Yao. Microwave-Assisted Solvothermal Synthesis of In-Si Co-Modified TiO2 Photocatalysts with Enhanced Photocatalytic Activity. Acta Phys. Chim. Sin., 2014, 30(8): 1543-1549.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201406161     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I8/1543

(1) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177 (1-3), 971. doi: 10.1016/j.jhazmat.2010.01.013
(2) Liu, X.; Fang, Z.; Zhang, X.; Zhang,W.;Wei, X.; Geng, B. Cryst. Growth Des. 2009, 9 (1), 197. doi: 10.1021/cg800213w
(3) Song, L.; Zhang, S.; Chen, B. Catal. Commun. 2009, 10 (12), 1565. doi: 10.1016/j.catcom.2009.03.022
(4) Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. J. Mater. Chem. 2010, 20 (25), 5301. doi: 10.1039/c0jm00376j
(5) Zhao,W. R.; Zeng,W. J.; Xi, H. P.; Yu, X. X. Acta Phys. -Chim. Sin. 2014, 30 (4), 761. [赵伟荣, 曾婉昀, 奚海萍, 余纤纤. 物理化学学报, 2014, 30 (4), 761.] doi: 10.3866/PKU.WHXB201402132
(6) Liu, M.; Piao, L.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang,W. Chem. Commun. 2010, 46 (10), 1664. doi: 10.1039/b924172h
(7) Hidalgo, M. C.; Aguilar, M.; Maicu, M.; Navío, J. A.; Colón, G. Catal. Today. 2007, 129 (1-2), 50. doi: 10.1016/j.cattod.2007.06.053
(8) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38 (1), 253. doi: 10.1039/b800489g
(9) He, Z.; Xie, L.; Song, S.;Wang, C.; Tu, J.; Hong, F.; Liu, Q.; Chen, J.; Xu, X. J. Mol. Catal. A: Chem. 2010, 319 (1-2), 78. doi: 10.1016/j.molcata.2009.12.003
(10) Liu, M.; You,W.; Lei, Z.; Zhou, G.; Yang, J.;Wu, G.; Ma, G.; Luan, G.; Takata, T.; Hara, M.; Domen, K.; Li, C. Chem. Commun. 2004, 2192.
(11) Rodríguez-González, V.; Zanella, R.; del Angel, G.; Gómez, R. J. Mol. Catal. A: Chem. 2008, 281 (1-2), 93. doi: 10.1016/j.molcata.2007.07.009
(12) Yu, J.; Xiong, J.; Cheng, B.; Liu, S. Appl. Catal. B 2005, 60 (3-4), 211. doi: 10.1016/j.apcatb.2005.03.009
(13) Wang, E.; Yang,W.; Cao, Y. J. Phys. Chem. C 2009, 113 (49), 20912. doi: 10.1021/jp9041793
(14) Sasikala, R.; Shirole, A. R.; Sudarsan, V.; Jagannath; Sudakar, C.; Naik, R.; Rao, R. Appl. Catal. A 2010, 377 (1-2), 47. doi: 10.1016/j.apcata.2010.01.039
(15) Peng, X. S.; Meng, G.W.; Zhang, J.;Wang, X. F.;Wang, Y.W.; Wang, C. Z.; Zhang, L. D. J. Mater. Chem. 2002, 12 (5), 1602. doi: 10.1039/b111315a
(16) Kuo, C.; Lu, S.;Wei, T. J. Cryst. Growth 2005, 285 (3), 400. doi: 10.1016/j.jcrysgro.2005.08.028
(17) Motta, F. V.; Lima, R. C.; Marques, A. P. A.; Leite, E. R.; Varela, J. A.; Longo, E. Mater. Res. Bull. 2010, 45 (11), 1703. doi: 10.1016/j.materresbull.2010.06.056
(18) Shibata, H.; Ogura, T.; Mukai, T.; Ohkubo, T.; Sakai, H.; Abe, M. J. Am. Chem. Soc. 2005, 127 (47), 16396. doi: 10.1021/ja0552601
(19) Das, S. K.; Bhunia, M. K.; Bhaumik, A. Dalton Trans. 2010, 39 (18), 4382. doi: 10.1039/c000317d
(20) Wilson, G. J.;Will, G. D.; Frost, R. L. J. Mater. Chem. 2002, 12 (6), 1787. doi: 10.1039/b200053a
(21) Li, Z.; Hou, B.; Xu, Y.;Wu, D.; Sun, Y. H. J. Colloid Interface Sci. 2005, 288, 149. doi: 10.1016/j.jcis.2005.02.082
(22) Li, F.; Jiang, Y.; Xia, M.; Sun, M.; Xue, B.; Liu, D.; Zhang, X. J. Phys. Chem. C 2009, 113 (42), 18134. doi: 10.1021/jp902558z
(23) Yu, C.; Yu, J. C.; Zhou,W.; Yang, K. Catal. Lett. 2010, 140 (3-4), 172.
(24) Shi,W.; Chen, Q.; Xu, Y.;Wu, D.; Huo, C. J. Solid State Chem. 2011, 184, 1983. doi: 10.1016/j.jssc.2011.05.056
(25) Cong, Y.; Zhang, J.; Chen, F.; Anpo, M.; He, D. J. Phys. Chem. C 2007, 111 (28), 10618. doi: 10.1021/jp0727493
(26) Sun, Y.; Murphy, C.; Reyesgil, K.; Reyesgarcia, E.; Lilly, J. Int. J. Hydrog. Energy 2008, 33 (21), 5967. doi: 10.1016/j.ijhydene.2008.07.100
(27) Zhou,W.; Liu, H.;Wang, J.; Liu, D.; Du, G.; Cui, J. ACS Appl. Mat. Interfaces 2010, 2 (8), 2385. doi: 10.1021/am100394x
(28) Gao, B.; Ma, Y.; Cao, Y.; Yang,W.; Yao, J. J. Phys. Chem. B 2006, 110 (29), 14391. doi: 10.1021/jp0624606
(29) Chen, Y.; Zhou, X.; Zhao, X.; He, X.; Gu, X. Mater. Sci. Eng. B 2008, 151 (2), 179. doi: 10.1016/j.mseb.2008.05.019
(30) Xiang, Q.; Yu, J.;Wong, P. J. Colloid Interface Sci. 2011, 357, 163. doi: 10.1016/j.jcis.2011.01.093
(31) Chen, C.; Ma,W.; Zhao, J. Chem. Soc. Rev. 2010, 39 (11), 4206. doi: 10.1039/b921692h
(32) Wang, M.;Wang, X. Sol. Energy Mater. Sol. Cells 2007, 91 (19), 1782. doi: 10.1016/j.solmat.2007.06.006
(33) Xiong, Z.; Zhang, L. L.; Ma, J.; Zhao, X. S. Chem. Commun. 2010, 46 (33), 6099. doi: 10.1039/c0cc01259a

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[3] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[4] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[5] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[6] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[7] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[8] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1297-1309.
[9] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1324-1337.
[10] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[11] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[12] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[13] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[14] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. Chim. Sin., 2017, 33(3): 602-610.
[15] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. Chim. Sin., 2017, 33(3): 573-581.