Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (9): 1641-1649    DOI: 10.3866/PKU.WHXB201406172
Preparation and Electrochemical Performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 Cathode Materials for Lithium-Ion Batteries
REN Xiang-Zhong, LIU Tao, SUN Ling-Na, ZHANG Pei-Xin
College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
Download:   PDF(1433KB) Export: BibTeX | EndNote (RIS)      


To improve the cycling performance of lithium-rich cathode materials, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 (x=0.00, 0.01, 0.02, 0.03, and 0.06) were synthesized by a combustion method. The structure and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical performances were examined by cyclic voltammetry (CV), electrochemical AC impedance spectroscopy, and galvanostatic charge-discharge cycling. The results indicate that all of the doped samples have a layer of α-NaFeO2. When charged and discharged at 0.1C and 1.0C (1.0C=180 mA·g-1) in the voltage range of 2.0-4.8 V, the initial discharge capacities of Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2 were 280.3 and 206.4 mAh·g-1, respectively. Moreover, the capacity retention after 50 cycles improved from 73.2% to 88.9% at 1.0C at room temperature. Meanwhile, this system delivered a higher discharge capacity of 76.5 mAh·g-1 than that of the bare materials (15 mAh·g-1) at 5.0C after 50 cycles. Electrochemical performances of the doped samples were improved at a 2.0C rate at different temperatures (50, 25, and -10 ℃). Furthermore, compared with the undoped material, the specific discharge capacity increased by 61.1% at -10 ℃ after 50 cycles.

Key wordsCombustion method      Lithium-ion battery      Cathode material      Lithium-rich material      Doping     
Received: 18 April 2014      Published: 17 June 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (21000174), Shenzhen Strategic Emerging Industry Development Funds, China (JCYJ20120613163733279, JCYJ20130329113849606).

Corresponding Authors: REN Xiang-Zhong     E-mail:
Cite this article:

REN Xiang-Zhong, LIU Tao, SUN Ling-Na, ZHANG Pei-Xin. Preparation and Electrochemical Performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 Cathode Materials for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(9): 1641-1649.

URL:     OR

(1) Gao, M.; Liu, N.;Wang,W.; Li, C.; Zhang, H.; Chen, Y.; Yu, Z.; Huang, Y. Solid State Ionics 2014, 258, 8. doi: 10.1016/j.ssi.2014.01.041
(2) Wang, Z.;Wu, F.; Su, Y. F.; Bao, L. Y.; Chen, L.; Li, N.; Chen, S. Acta Phys. -Chim. Sin. 2012, 28, 823. [王昭, 吴锋, 苏岳锋, 包丽颖, 陈来, 李宁, 陈实. 物理化学学报, 2012, 28, 823.] doi: 10.3866/PKU.WHXB201202102
(3) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, Y. R.; Peng, Z. D.; Du, K. Acta Phys. -Chim. Sin. 2012, 28, 1183. [曹雁冰, 段建国, 姜锋, 胡园荣, 彭忠东, 杜柯. 物理化学学报, 2012, 28, 1183.] doi: 10.3866/PKU.WHXB201202221
(4) Ohzuku, T.; Ueda, A. J. Electrochem. Soc. 1994, 141, 2972. doi: 10.1149/1.2059267
(5) Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Nano Lett. 2009, 9, 1045. doi: 10.1021/nl803394v
(6) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
(7) Wang, Z.; Liu, E.; He, C.; Shi, C.; Li, J.; Zhao, N. J. Power Sources 2013, 236, 25. doi: 10.1016/j.jpowsour.2013.02.022
(8) Nie,W. B.; Xiao, Q. C.;Wang, J. L.; Lei, G. T.; Xiao, Q. Z.; Li, C. H. J. Inorg. Mater. 2014, 29, 258. [聂文波, 肖其昌, 王京亮, 雷钢铁, 肖启振, 李朝晖. 无机材料学报, 2014, 29, 258.]
(9) Song, B.; Lai, M. O.; Lu, L. Electrochim. Acta 2012, 80, 187. doi: 10.1016/j.electacta.2012.06.118
(10) Jafta, C. J.; Ozoemena, K. I.; Mathe, M. K.; Roos,W. D. Electrochim. Acta 2012, 85, 411. doi: 10.1016/j.electacta.2012.08.074
(11) Ren, X. Z.; Hu, S. M.; Shi, C.; Zhang, P. X.; Yuan, Q. H.; Liu, J. H. J. Solid State Electrochem. 2012, 16, 2135. doi: 10.1007/s10008-011-1630-2
(12) Ding, C. X.; Bai, Y. C.; Feng, X. Y.; Chen, C. H. Solid State Ionics 2011, 189, 69. doi: 10.1016/j.ssi.2011.02.015
(13) Zhang, K. K.; Jia, M. K.; Tang, H.; Guo, G. H. Wu Han Univ. Technol., Nat. Sci. 2002, 48, 409. [张克立, 贾漫珂, 汤昊,郭光辉. 武汉大学学报: 理学版, 2002, 48, 409.]
(14) Dai, K. H.; Zhang, Y.; Jin, Q. J.; Zhai, Y. C. J. Power Sources 2013, 37, 1111. [代克化, 张莹, 金秋瑾, 翟玉春. 电源技术, 2013, 37, 1111.]
(15) Yamada, A.; Chung, S. C.; Hinokuma, K. J. J. Electrochem. Soc. 2001, 148, 224. doi: 10.1149/1.1348257
(16) Prosini, P. P.; Carewska, M.; Scaccia, S.;Wisniewski, P.; Passerini, S.; Pasquali, M. J. Electrochem. Soc. 2002, 149, A886.
(17) Yoon,W. S.; Iannopollo, S.; Grey, C. P.; Carlier, D.; Gorman, J.; Reed, J.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7, A167.
(18) Cheng, C. X.; Tan, L.; Liu, H.W.; Huang, X. T. Mater. Res. Bull. 2011, 46, 2032. doi: 10.1016/j.materresbull.2011.07.004
(19) Gong, Z. L.; Liu, H. S.; Guo, X. J.; Zhang, Z. R.; Yong, Y. J. Power Sources 2004, 136, 139. doi: 10.1016/j.jpowsour.2004.05.022
(20) Oh, S. H.; Lee, S, M.; Cho,W. I. Electrochim. Acta 2006, 51, 3637. doi: 10.1016/j.electacta.2005.10.023
(21) Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9, 787. doi: 10.1016/j.elecom.2006.11.006
(22) Wu, Y.; Manthiram, A. Solid State Ionics 2009, 180, 50. doi: 10.1016/j.ssi.2008.11.002
(23) Xiong, X. D.; Li, X. Q.; Li,W. S. J. Power Sources 2013, 230, 89.
(24) Park, S. H.; Kang, S. H.; Johnson, C.; Amine, K.; Thackeray, M. Electrochem. Commun. 2007, 9, 262. doi: 10.1016/j.elecom.2006.09.014
(25) Riley, L. A.; Atta, A. V.; Cavanagh, A. S.; Yan, Y. F.; George, S. M.; Liu, P.; Dillon, A. C.; Lee, S. H. J. Power Sources 2011, 196, 3317. doi: 10.1016/j.jpowsour.2010.11.124
(26) Huang, Y. Y.; Chen, J. T.; Ni, J. F.; Zhou, H. H.; Zhang, X. X. J. Power Sources 2009, 188, 538. doi: 10.1016/j.jpowsour.2008.12.037
(27) Jiang, Z. Q.; Jiang, Z. G. J. Alloy. Compd. 2012, 537, 308.

[1] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[2] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[3] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[4] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[8] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1297-1309.
[9] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[10] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[11] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. Chim. Sin., 2017, 33(3): 573-581.
[12] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. Chim. Sin., 2017, 33(2): 295-304.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[14] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[15] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.