Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (9): 1650-1658    DOI: 10.3866/PKU.WHXB201406181
ELECTROCHEMISTRY AND NEW ENERGY     
Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries
LIU Jian-Hua1, LIU Bin-Hong2, LI Zhou-Peng2
1. Depatment of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, P. R. China;
2. Department of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(1336KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Fe3O4/graphene composites with a conductive, porous three-dimensional (3D) graphene network were synthesized through a facile method. In the preparation process, Fe(OH)3 colloid was formed in situ by adding FeCl3 solution to a boiling graphene oxide (GO) suspension, with Fe(OH)3/GO precipitated because of the electrostatic interaction between the two components. The precipitate was separated and added to a second GO suspension to achieve additional GO encapsulation. This self-assembled Fe(OH)3/GO precursor was then hydrothermally and heat treated, resulting in the formation of Fe3O4/graphene composites. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy results revealed that the Fe3O4/graphene composites possess a favorable 3D porous graphene network embedding 50- to 100-nm-sized Fe3O4 nanoparticles. The Fe3O4/graphene composites exhibit good electrochemical performance as an anode material for Li-ion batteries. The electrode composed of the Fe3O4/graphene composite delivered a capacity of 1390 mAh·g-1 for the first lithiation and retained a capacity of 819 mAh·g-1 after 50 cycles. The electrodes also exhibited good rate capability. The present results demonstrate that the electrochemical performance of the Fe3O4/graphene composite is highly sensitive to its preparation procedure and to the resulting nanostructure. Each of the four preparation procedures was experimentally shown to be important for achieving the final nanostructure and good electrochemical performance. A formation mechanism for the Fe3O4/graphene composite is also proposed.



Key wordsFe3O4/graphene composite      Self-assembly      Anode material for Li-ion battery      Cyclic stability      Rate capability     
Received: 27 March 2014      Published: 18 June 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51271164, 21276229), Natural Science Foundation of Zhejiang Province, China (Z4110126), and Fund for the Key Science and Technology Innovation Team of Zhejiang Province, China (2010R50013).

Corresponding Authors: LIU Bin-Hong     E-mail: liubh@zju.edu.cn
Cite this article:

LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries. Acta Phys. Chim. Sin., 2014, 30(9): 1650-1658.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201406181     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I9/1650

(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(3) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z
(4) Gao, B.; Sinha, S.; Fleming, L.; Zhou, O. Adv. Mater. 2001, 13, 816. doi: 10.1002/1521-4095(200106)13:11<816::AIDADMA816>3.0.CO;2-P
(5) Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. doi: 10.1021/ja0345524
(6) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. doi: 10.1038/35035045
(7) Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115. doi: 10.1039/b919877f
(8) Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Adv. Mater. 2010, 22, E170.
(9) Ji, L.W.; Lin, Z.; Alcoutlabi, M.; Zhang, X.W. Energy Environ. Sci. 2011, 4, 2683.
(10) Zhang, L. S.; Jiang, L. Y.; Yan, H. J.;Wang,W. D.;Wang,W.; Song,W. G.; Guo, Y. G.;Wan, L. J. J. Mater. Chem. 2010, 20, 5462. doi: 10.1039/c0jm00672f
(11) Chen, J.; Huang, K. L.; Liu, S. Q. Chin. J. Inorg. Chem. 2008, 24, 621. [陈洁, 黄可龙, 刘素琴. 无机化学学报, 2008, 24, 621.]
(12) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X. S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27 (6), 1439. [程风, 黄可龙, 刘素琴, 房雪松, 张新. 物理化学学报, 2011, 27 (6), 1439.] doi: 10.3866/PKU.WHXB20110607
(13) Liang, J. F.; Zhou, J.; Guo, L. Science Foundation in China 2013, 21 (1), 59.
(14) Tang, Y. P.;Wang, S. M.; Hou, G. Y.; Zheng, G. Q. Battery Bimonthly 2014, 44 (1), 50. [唐谊平, 王诗明, 侯广亚, 郑国渠. 电池, 2014, 44 (1), 50.]
(15) Sun, J.; Zhao, D. L.; Liu, H.; Jing, L.; Chi,W. D.; Shen, Z. M. J. Function Materials 2012, 43 (15), 2027. [孙杰, 赵东林,刘辉, 景磊, 迟伟东, 沈曾民. 功能材料, 2012, 43 (15), 2027.]
(16) Ban, C. M.;Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Adv. Mater. 2010, 22, E145.
(17) Ma, Y.; Zhang, C.; Ji, G.; Lee, J. Y. J. Mater. Chem. 2012, 22, 7845. doi: 10.1039/c2jm30422h
(18) Su, J.; Cao, M. H.; Ren, L., Hu, C.W. J. Phys. Chem. C 2011, 115, 14469.
(19) Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Chem. Commun. 2010, 46, 2025. doi: 10.1039/b919738a
(20) Chen, S. Q.;Wang, Y. J. Mater. Chem. 2010, 20, 9735. doi: 10.1039/c0jm01573c
(21) Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren,W.; Li, F., Chen, H. M. Nano Energy 2012, 1, 107.
(22) Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388. doi: 10.1039/c3ee23870a
(23) Chen, S., Zhu, J.W.;Wu, X. D.; Han, Q. F.;Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t
(24) Zhou, G.;Wang, D.W.; Li, F.; Zhang, L.; Li, N.;Wu, Z. S.; Wen, L.; Lu, G. Q.; Chen, H. M. Chem. Mater. 2010, 22, 5306. doi: 10.1021/cm101532x
(25) Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, Y. G.;Wang, T. H. J. Mater. Chem. 2010, 20, 5538. doi: 10.1039/c0jm00638f
(26) Behera, S. K. Chem. Commun. 2011, 47, 10371. doi: 10.1039/c1cc13218k
(27) Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.;Warner, J. H. J. Mater. Chem. 2011, 21, 5069. doi: 10.1039/c0jm03717f
(28) Chen, Y.; Song, B. H.; Tang, X. S.; Lu, L.; Xu, J. M. J. Mater. Chem. 2012, 22, 17656. doi: 10.1039/c2jm32057f
(29) Zhu, X.; Zhu, Y.; Murali, S.; Stroller, M. D.; Ruoff, R. S. ACS Nano 2011, 5, 3333. doi: 10.1021/nn200493r
(30) Zai, J. T .; Yu, C.; Zou, Q.; Tao, L. Q.;Wang, K. X.; Han, Q. Y.; Li, B.; Xiao, Y. L.; Qian, X. F.; Qi, R. R. RSC Adv. 2012, 2, 4397. doi: 10.1039/c2ra20319g
(31) Fan, Z.; Yan, J.;Wei, T.; Zhi, L.; Ning, G.; Li, T.;Wei, F. Adv. Func. Mater. 2011, 11, 2905.
(32) Zhou, J.; Song, H.; Ma, L.; Chen, X. RSC Adv. 2011, 1, 782. doi: 10.1039/c1ra00402f
(33) Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z
(34) Yang, S.; Feng, X.; Ivanovici, S.; Mullen, K. Angew. Chem. Int. Edit. 2010, 49, 8408. doi: 10.1002/anie.201003485
(35) Wei,W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Mullen, K. Adv. Mater. 2013, 25, 2909. doi: 10.1002/adma.v25.21
(36) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(37) Armelao, L.; Bertoncello, R.; Crociani, L.; Depaoli, G.; Granozzi, G.; Tondello, E.; Bettinelli, M. J. Mater. Chem. 1995, 5, 79. doi: 10.1039/jm9950500079
(38) Qu, J.; Yin, Y. X.;Wang, Y. Q.; Yan, Y.; Guo, Y. G.; Song,W. G. ACS Appl. Mater. Interfaces 2013, 5, 3932.
(39) Anderson, M. A.; Rubin, A. J. Adsorption of Inorganics at Solid-Liquid Interfaces; Ann Arbor Science Publishers, Inc.: Ann Arbor, USA, 1981.
(40) Wang, T. Q.;Wang, X. L.; Lu, Y.; Xiong, Q. Q.; Zhao, X. Y.; Cai, J. B.; Huang, S.; Gu, C. D.; Tu, J. P. RSC Adv. 2014, 4, 322. doi: 10.1039/c3ra45268a

[1] ZHANG Hong-Zhi, ZHANG Zhi-Qing, WANG Fang, ZHOU Ting, WANG Xiu-Feng, ZHANG Guo-Dong, LIU Ting-Ting, LIU Shu-Zhen. Application of Structural DNA Nanotechnology[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1520-1532.
[2] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[3] ZHANG Zhen, XIE Wen-Jun, YANG Yi Isaac, SUN Geng, GAO Yi-Qin. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. Chim. Sin., 2017, 33(3): 539-547.
[4] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. Chim. Sin., 2017, 33(3): 582-589.
[5] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2255-2263.
[6] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2826-2840.
[7] HAOWei-Ju, ZHANG Jun-Qi, SHANG Ya-Zhuo, XU Shou-Hong, LIU Hong-Lai. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2628-2635.
[8] YE Juan, SUN Kai, TAO Min-Long, TU Yu-Bing, XIE Zheng-Bo, WANG Ya-Li, HAO Shao-Jie, XIAO Hua-Fang, WANG Jun-Zhong. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2593-2598.
[9] WANG Xiu-Feng, ZHANG Li, LIU Ming-Hua. Supramolecular Gels: Structural Diversity and Supramolecular Chirality[J]. Acta Phys. Chim. Sin., 2016, 32(1): 227-238.
[10] GU Gao-Chen, LI Na, ZHANG Xue, HOU Shi-Min, WANG Yong-Feng, WU Kai. Sierpiński Triangle Fractal Structures Investigated by STM[J]. Acta Phys. Chim. Sin., 2016, 32(1): 195-200.
[11] WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2016, 32(1): 249-260.
[12] WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1365-1373.
[13] LIANG Ju, LAI Dan-Yu, WU Wen-Lan, LI Guo-Zhi, LI Jun-Bo, FANG Cai-Lin. Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides[J]. Acta Phys. Chim. Sin., 2015, 31(4): 722-728.
[14] DENG Yong-Hong, LIU You-Fa, ZHANG Wei-Jian, QIU Xue-Qing. Formation of Colloidal Spheres from a Lignin-Based Azo Polymer[J]. Acta Phys. Chim. Sin., 2015, 31(3): 505-511.
[15] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.