Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (9): 1616-1624    DOI: 10.3866/PKU.WHXB201406182
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes
LIU Fen1,2, ZOU Jian-Wei1, HU Gui-Xiang1, JIANG Yong-Jun1
1. College of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, Zhejiang Province, P. R. China;
2. Department of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(974KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ab initio calculations have been performed for a group of 59 aromatic compounds at the HF/6-31G* level of theory. Electrostatic potentials (ESPs) and the statistically based structural descriptors derived from ESPs on the molecular surface have been obtained. The linear relationships between the adsorption equilibrium constants of organic contaminants by carbon nanotubes and the theoretical descriptors have been established by multiple linear regression. It is shown that the quantities derived from electrostatic potentials, Vmin, σ+2 and ΣVind+ together with the molecular surface area (S) and the energy level of lowest occupied molecular orbital (εLUMO) can be used to express the quantitative structure-property relationship (QSPR) of this sample set. All of the descriptors introduced in the QSPR models have definite physical meanings and their reasonability can be explained in terms of intermolecular interactions between the aromatic pollutants and carbon nanotubes or water. The stabilities and predictive powers of the models have been validated by "leave-one-out" and Monte Carlo cross-validation methods. Three nonlinear modeling techniques, namely supported vector machine (SVM), least-square supported vector machine (LSSVM), as well as Gaussian process (GP), have also been used to construct the predictive models. Though the SVM and LSSVM models exhibit strong fitting abilities, their predictive powers are inferior to the other models tested. The GP model yields the best fit and predictive ability among all of the models. Its advantage over the linear model, however, is not as remarkable as expected, which means that the relationship between the molecular structure and the adsorption property for the present system is primarily linear.



Key wordsCarbon nanotube      Organic contaminant      Electrostatic potentials on molecular surface      Quantitative structure-property relationship      Gaussian process     
Received: 30 April 2014      Published: 18 June 2014
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21272211) and Program of Science and Technology of Ningbo, China (2011A610021, 2013D1003).

Corresponding Authors: ZOU Jian-Wei     E-mail: jwzou@nit.zju.edu.cn
Cite this article:

LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes. Acta Phys. Chim. Sin., 2014, 30(9): 1616-1624.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201406182     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I9/1616

(1) Popov, V. N. Mater. Sci. Eng. R-Rep. 2004, 43, 61. doi: 10.1016/j.mser.2003.10.001
(2) Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Prog. Polym. Sci. 2010, 35, 357. doi: 10.1016/j.progpolymsci.2009.09.003
(3) Upadhyayula, V. K. K.; Deng, S.; Mitchell, M. C.; Smith, G. B. Sci. Total Environ. 2009, 408, 1. doi: 10.1016/j.scitotenv.2009.09.027
(4) Baek, Y.; Kim, C.; Seo, D. K.; Kim, T.; Lee, J. S.; Kim, Y. H.; Ahn, K. H.; Bae, S. S.; Lee, S. C.; Lim, J.; Lee, K.; Yoon, J. J. Membr. Sci. 2014, 460, 171. doi: 10.1016/j.emsci.2014.02.042
(5) Deng, S. G.; Upadhyayula, V. K. K.; Smith, G. B.; Mitchell, M. C. IEEE Sens. J. 2008, 8, 954. doi: 10.1109/JSEN.2008.923929
(6) Mauter, M. S.; Elimelech, M. Environ. Sci. Technol. 2008, 42, 5843. doi: 10.1021/es8006904
(7) Ye, C.; Gong, Q. M.; Lu, F. P.; Liang, J. Acta Phys. -Chim. Sin. 2007, 23, 1321. [叶超, 巩前明, 卢方平, 梁吉. 物理化学学报, 2007, 23, 1321.] doi: 10.1016/S1872-1508(07)60066-7
(8) Kah, M.; Zhang, X.; Jonker, M. T. O.; Hofmann, T. Environ. Sci. Technol. 2011, 45, 6011.(9) Zeng, X. L.; Zhang, X. L.;Wang, Y. Chemosphere 2013, 91, 229. doi: 10.1016/j.chemosphere.2012.12.060
(10) Ghasemi, J.; Saadi, S. Anal. Chim. Acta 2007, 2, 99.(11) Lu, C. H.;Wang, Y.; Yin, C. S.; Guo,W. M.; Hu, X. F. Chemosphere 2006, 63, 1384. doi: 10.1016/j.chemosphere.2005.09.052
(12) Feng, C. J.; Mu, L. L.; Yang,W. H.; Cai, K. Y. Acta Chim. Sin. 2008, 66, 2093. [冯长君, 沐来龙, 杨伟华, 蔡可迎. 化学学报, 2008, 66, 2093.](13) Xia, X. R.; Nancy, A.; Monteiro, R.; Riviere, J. E. Nat. Nanotechnol. 2010, 5, 671. doi: 10.1038/nnano.2010.164
(14) Apul, O. G.;Wang, Q, L.; Shao, T.; Rieck J. R.; Karanfil, T. Environ. Sci. Technol. 2013, 47, 2295.(15) Wang, Q. L.; Apul, O. G.; Xuan, P. F.; Luo, F.; Karanfil, T. RSC Adv. 2013, 3, 23924. doi: 10.1039/c3ra43599g
(16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.(17) STATISTICA forWindows, Version 5.5; Statsoft Inc.: Tulsa, OK, 1999.(18) Zhou, P.; Tian, F. F.; Lv, F. L.; Shang, Z. C. J. Chromatogr. A 2009, 1216, 3107. doi: 10.1016/j.chroma.2009.01.086
(19) Pwealta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O′Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21. doi: 10.1021/nl020222q
(20) Murray, J. S.; Brinck, T.; Lane, P.; Paulsen, K.; Politzer, P. J. Mol. Struct. -Theochem 1994, 307, 55. doi: 10.1016/0166-1280(94)80117-7
(21) Sang, P.; Zou, J.W.; Zhou, P.; Xu, L. Chemosphere 2011, 83, 1045. doi: 10.1016/j.chemosphere.2011.01.063
(22) Zou, J.W.; Zhao,W. N.; Shang, Z. C.; Huang, M. L.; Guo, M.; Yu, Q. S. J. Phys. Chem. A 2002, 106, 11550. doi: 10.1021/jp025984o
(23) Xu, H. Y.; Zou, J.W.; Jiang, Y. J.; Hu, G. X.; Yu, Q. S. J. Chromatog. A 2008, 1198 -1199, 202.(24) Tropsha, A.; Golbraikh, A. Handbook of Chemoinformatics Algorithms; CRC Press: Boca Raton, FL, 2010; pp 213-233.(25) Manchester, J.; CzermiDski, R.J. Chem. Inf. Model. 2008, 48, 1167. doi: 10.1021/ci800009u
(26) Vapnik, V. N. The Nature of Statistical Learning Theory, 2nd ed.; Springer-Verlag: New York, 1999; pp 138-146.(27) Obrezanova, O.; Csányi, G.; Gola, J. M. R.; Segall, M. D. J. Chem. Inf. Model. 2007, 47, 1847. doi: 10.1021/ci7000633
(28) Schroeter, T. S.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K. R. Med. Chem . Res. 2007, 2, 1265.(29) Zhou, P.; Chen, X.;Wu, Y. Q.; Shang, Z. C. Amino Acid 2010,  38, 199. doi: 10.1007/s00726-008-0228-1
(30) Ren, Y. R.; Chen, S. C.; Zou, X. C.; Tian, F. F.; Zhou, P. Scientia Sinica Chimica 2012, 42, 1179. [任彦荣, 陈绍成, 邹晓川, 田菲菲, 周鹏. 中国科学: 化学, 2012, 42, 1179.]
(31) Sang, P.; Zou, J.W.; Dai, D. M.; Jiang, Y. J. Chemometrics Intell. Lab. Syst. 2013, 127, 166.
(32) Sang, P.; Zou, J.W.; Yu, Y. L.; Huang, M. L. Chemometrics Intell. Lab. Syst. 2012, 112, 8.

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[3] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[4] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Phys. Chim. Sin., 2017, 33(5): 918-926.
[5] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. Chim. Sin., 2016, 32(4): 1029-1035.
[6] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Sin., 2016, 32(3): 691-700.
[7] SUN Hao-Yu, PU Jin-Huan, TANG Gui-Hua. High-Performance Thermogalvanic Cell Based on Organic Nanofluids[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2555-2562.
[8] XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2427-2446.
[9] YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Phys. Chim. Sin., 2016, 32(1): 313-320.
[10] GU Ze-Xing, TU Chang-Neng, WANG Yun, YANG Ji-Jun, LIU Ning, LIAO Jia-Li, YANG Yuan-You, TANG Jun. Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(Suppl): 95-100.
[11] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.
[12] TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1615-1620.
[13] SHEN Zhuang-Lin, HE Gao-Hong, ZHANG Ning, HAO Ce. Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1025-1034.
[14] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[15] YE Huang-Qing, DENG Yong-Hong, YAN Yan, ZHANG Mei-Jie, QIAN Yong, QIU Xue-Qing. Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1991-1996.