Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (9): 1667-1673    DOI: 10.3866/PKU.WHXB201406251
Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2
XUE Qing-Rui1, LI Jian-Ling1, XU Guo-Feng1, HOU Peng-Fei1, YAN Gang1, DAI Yu1, WANG Xin-Dong1, GAO Fei2
1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China;
2. China Electric Power Research Institute, Beijing 100085, P. R. China
Download:   PDF(1657KB) Export: BibTeX | EndNote (RIS)      


A lithium-rich solid-solution layered cathode material, Li[Li0.2Mn0.54Ni0.13Co0.13]O2, was synthesized using a fast co-precipitation method, and surface modified withAg/C via chemical deposition. The electrochemical properties, structures, and morphologies of the prepared samples were investigated using X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), galvanostatic charge-discharge cycling, cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and energy dispersive X-ray spectroscopy (EDS). The XRD results showed that the pristine and Ag/Ccoated cathode materials both have hexagonal α-NaFeO2 layered structures with the R3m space group. Microscopic morphological observations and EDS elemental mapping showed that a uniform Ag/C coating layer of thickness 25 nm was deposited on the surfaces of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 particles. The Ag/C-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material gave an excellent electrochemical performance. The initial discharge capacity (0.05C) of the Ag/C- coated sample was 272.4 mAh ·g-1, with an initial coulombic efficiency of 77.4%, corresponding to 242.6 mAh·g-1 for the pristine sample, with an initial coulombic efficiency of 67.6%, in the potential range 2.0-4.8 V (vs Li/Li+). After 30 cycles (0.2C), the Ag/C-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 retained a capacity of 222.6 mAh·g-1, which was 14.45% higher than that of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. We also found that the Ag/C coating improved the rate capability of the solid-solution material Li[Li0.2Mn0.54Ni0.13Co0.13]O2. The capacity retention (1C) of the Ag/C-coated sample was 81.3%, compared with the capacity at 0.05C. CV and EIS results showed that the Ag/C coating layer suppressed the oxygen release in the initial charge progress and lowered the surface film resistance and electrochemical reaction resistance of the pristine sample.

Key wordsLithium ion battery      Solid solution material      Chemical deposition method      Surface modification      Compound coating     
Received: 09 May 2014      Published: 25 June 2014
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51172023, 51372021), National High Technology Research and Development Program of China (863) (2012AA110302), and Basic Forward-Looking Technology Project of the State Grid Corporation, China (DG71-13-009).

Corresponding Authors: LI Jian-Ling     E-mail:
Cite this article:

XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. Acta Phys. Chim. Sin., 2014, 30(9): 1667-1673.

URL:     OR

(1) Yang, X.; Ni, J. F.; Huang, Y. Y.; Chen, J. T.; Zhou, H. H.; Zhang, X. X. Acta Phys. -Chim. Sin. 2006, 22 (2), 183. [杨箫, 倪江锋, 黄友元, 陈继涛, 周恒辉, 张新祥. 物理化学学报, 2006, 22 (2), 183.] doi: 10.3866/PKU.WHXB20060211
(2) Qiu, X. Y.; Zhuang, Q. C.;Wang, H. M.; Cui, Y. L.; Fang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1499. [邱祥云, 庄全超, 王红明, 崔永丽, 方亮, 孙世刚. 物理化学学报, 2010, 26 (6), 1499.] doi: 10.3866/PKU.WHXB20100608
(3) Chen, Y.;Wang, Z. L.; Yu, C. Y.; Xia, D. G.;Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (8), 1498. [陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24 (8), 1498.] doi: 10.3866/PKU.WHXB20080829
(4) Rajarathinam, S.; Mitra, S.; Petla, R. K. Electrochimica Acta 2013, 108, 135. doi: 10.1016/j.electacta.2013.06.102
(5) Li, F.; Zhao, S. X.;Wang, K. Z.; Li, B. H.; Nan, C.W. Electrochimica Acta 2013, 97, 17. doi: 10.1016/j.electacta.2013.02.058
(6) Jin, X.; Xu, Q. J.; Yuan, X. L.; Zhou, L. Z.; Xia, Y. Y. Electrochimica Acta 2013, 114, 605. doi: 10.1016/j.electacta.2013.10.091
(7) Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. J. Am. Chem. Soc. 2011, 133, 4404. doi: 10.1021/ja108588y
(8) Wei, X.; Zhang, S. C.; Du, Z. J.; Yang, P. H.;Wang, J.; Ren, Y. B. Electrochimica Acta 2013, 107, 549. doi: 10.1016/j.electacta.2013.05.118
(9) Huang, B.; Li, X. H.;Wang, Z. X.; Guo, H. J.; Shen, L.;Wang, J. X. J. Power Sources 2014, 252, 200. doi: 10.1016/j.jpowsour.2013.11.092
(10) Zhang, H. L.; Song, T. F. Electrochimica Acta 2013, 114, 116. doi: 10.1016/j.electacta.2013.10.030
(11) Jafta, C. J.; Ozoemena, K. I.; Mathe, M. K.; Roos,W. D. Electrochimica Acta 2012, 85, 411. doi: 10.1016/j.electacta.2012.08.074
(12) Dianat, A.; Seriani, N.; Bobeth, M.; Cuniberti, G. J. Mater. Chem. A 2013, 1, 9273. doi: 10.1039/c3ta11598d
(13) Kang, S. H.; Thackeray, M. M. J. Electrochem. Soc. 2008, 155 (4), A269.
(14) Xu, G. F.; Li, J. L.; Xue, Q. R.; Ren, X. P.; Yan, G.;Wang, X. D.; Kang, F. Y. J. Power Sources 2014, 248, 894. doi: 10.1016/j.jpowsour.2013.10.002
(15) Cong, L. N.; Gao, X. G.; Ma, S. C.; Guo, X.; Zeng, Y. P.; Tai, L. H.;Wang, R. S.; Xie, H. M.; Sun, L. Q. Electrochimica Acta 2014, 115, 399. doi: 10.1016/j.electacta.2013.10.117
(16) Wu, Y. Q.; Ming, J.; Zhuo, L. H.; Yu, Y. C.; Zhao, F. Y. Electrochimica Acta 2013, 113, 54. doi: 10.1016/j.electacta.2013.09.042
(17) Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Liu, X. Y.; Zhang, Y. Q.;Wang, X. L.; Gu, C. D. Electrochimica Acta 2013, 88, 671. doi: 10.1016/j.electacta.2012.10.111
(18) Myung, S. T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y. K.; Kumagai, N. J. Phys. Chem. C 2007, 111, 4061. doi: 10.1021/jp0674367
(19) Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X.W.; Chen, M.W.; Zhou, H. S. Angew. Chem. Int. Edit. 2014, 53 (2), 442. doi: 10.1002/anie.v53.2
(20) Liu, J.; Reeja-Jayan, B.; Manthiram, A. J. Phys. Chem. C 2007, 114, 9528.
(21) Ju, J. H.; Cho, S.W.; Hwang, S. G.; Yun, S. R.; Lee, Y.; Jeong, H. M.; Hwang, M. J.; Kim, K. M.; Ryu, K. S. Electrochimica Acta 2011, 56, 8791. doi: 10.1016/j.electacta.2011.07.093
(22) Chen, Y.; Xu, G. F.; Li, J. L.; Zhang, Y. K.; Chen, Z.; Kang, F. Y. Electrochimica Acta 2013, 87, 686. doi: 10.1016/j.electacta.2012.09.024
(23) Son, M. Y.; Hong, Y. J.; Choi, S. H.; Kang, Y. C. Electrochimica Acta 2013, 103, 110. doi: 10.1016/j.electacta.2013.03.200
(24) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/b702425h
(25) Wang, C. C.; Jarvis, K. A.; Ferreira, P. J.; Manthiram, A. Chem. Mater. 2013, 25, 3267. doi: 10.1021/cm402181f
(26) Neumann, C. C. M.; Laborda, E.; Tschulik, K.;Ward, K. R.; Compton, R. G. Nano Res. 2013, 6, 511. doi: 10.1007/s12274-013-0328-4
(27) Wu, F.; Li, N.; Su, Y. F.; Lu, H. Q.; Zhang, L. J.; An, R.;Wang, Z.; Bao, L. Y.; Chen, S. J. Mater. Chem. 2012, 22, 1489. doi: 10.1039/c1jm14459f
(28) Lanz, P.; Sommer, H.; Schulz-Dobrik, M.; Novak, P. Electrochimica Acta 2013, 93, 114. doi: 10.1016/j.electacta.2013.01.105
(29) Liu, Q.; Du, K.; Guo, H.W.; Peng, Z. D.; Cao, Y. B.; Hu, G. R. Electrochimica Acta 2013, 90, 350. doi: 10.1016/j.electacta.2012.12.071
(30) Karthikeyan, K.; Amaresh, S.; Aravindan, V.; Kim,W. S.; Nam, K.W.; Yang, X. Q.; Lee, Y. S. J. Power Sources 2013, 232, 240. doi: 10.1016/j.jpowsour.2012.12.114

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[5] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[6] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2045-2051.
[7] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1604-1622.
[8] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[9] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.
[10] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[11] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[12] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1351-1358.
[13] GONG Jin-Hua, WANG Chen-Hui, BIAN Zi-Jun, YANG Li, HU Jun, LIU Hong-Lai. Asymmetric Polyimide Mixed Matrix Membranes with Porous Materials-Modified Surfaces for CO2/N2 and CO2/CH4 Separations[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1963-1970.
[14] ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(4): 669-676.
[15] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(12): 2283-2290.