Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (9): 1625-1633    DOI: 10.3866/PKU.WHXB201407031
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Molecular Dynamics Simulation Study of Structural and Transport Properties of Methanol-Water Mixture in Carbon Nanotubes
GAO Wen-Xiu, WANG Hong-Lei, LI Shen-Min
Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, Liaoning Province, P. R. China
Download:   PDF(1139KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Molecular dynamics simulations of a methanol-water mixture (molar ratio 1:1) were performed to determine the differences among the structural and transport properties in three carbon nanotube (CNT) systems: an equilibrium system, a system with an external pressure, and a system with a gradient electric field. The simulations showed that in both the equilibrium system and the system with an external pressure, the methanol-water mixture is clearly immiscible in the CNTs, with the water molecules distributed mainly around the tube axis, and the methanol molecules located near the tube wall; however, in the system with a gradient electric field, the hydrophobic CNTs become hydrophilic, and the phenomenon of methanol-water separation disappears. In contrast, unlike the unidirectional transport observed in the system with an external pressure, the particles move in two directions in the system with a gradient electric field, with a flow one order of magnitude larger than that in the corresponding external pressure system. However, in the system with a gradient electric field, the net flux is small, because the flows for the two directions are similar. There is thus a small flux difference between the system with an external pressure and the system with a gradient electric field.



Key wordsMethanol      Water      Carbon nanotube      Molecular dynamics simulation      Flux     
Received: 16 April 2014      Published: 03 July 2014
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21133005).

Corresponding Authors: LI Shen-Min     E-mail: lishenmin@dlu.edu.cn
Cite this article:

GAO Wen-Xiu, WANG Hong-Lei, LI Shen-Min. Molecular Dynamics Simulation Study of Structural and Transport Properties of Methanol-Water Mixture in Carbon Nanotubes. Acta Phys. Chim. Sin., 2014, 30(9): 1625-1633.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201407031     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I9/1625

(1) Remy, T.; Saint Remi, J. C.; Singh, R.;Webley, P. A.; Baron, G. V.; Denayer, J. F. M. J. Phys. Chem. C 2011, 115 (16), 8117. doi: 10.1021/jp111615e
(2) Nakao, S. I.; Saitoh, F.; Asakura, T.; Toda, K.; Kimura, S. J. Membr. Sci. 1987, 30 (3), 273. doi: 10.1016/S0376-7388(00)80123-4
(3) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
(4) Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Science 2004, 303 (5654), 62. doi: 10.1126/science.1092048
(5) Holt, J. K.; Park, H. G.;Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312 (5776), 1034. doi: 10.1126/science.1126298
(6) Liu, Y.; Consta, S.; Goddard,W. A. J. Nanosci. Nanotechnol. 2010, 10 (6), 3834. doi: 10.1166/jnn.2010.1999
(7) Zhao,W. H.; Shang, B.; Du, S. P.; Yuan, L. F.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2012, 137 (3), 034501. doi: 10.1063/1.4732313
(8) Tian, X. L.; Yang, Z. X.; Zhou, B.; Xiu, P.; Tu, Y. S. J. Chem. Phys. 2013, 138 (20), 204711. doi: 10.1063/1.4807484
(9) Service, R. F. Science 2006, 313 (5790), 1088. doi: 10.1126/science.313.5790.1088
(10) Corry, B. J. Phys. Chem. B 2008, 112 (5), 1427. doi: 10.1021/jp709845u
(11) Gong, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. Nat. Nanotechnol. 2007, 2 (11), 709. doi: 10.1038/nnano.2007.320
(12) Guo, X. Q.; Su, J. Y.; Guo, H. X. Soft Matter 2012, 8 (4), 1010. doi: 10.1039/c1sm06509b
(13) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101 (6), 064502. doi: 10.1103/PhysRevLett.101.064502
(14) Su, J. Y.; Guo, H. X. ACS Nano 2010, 5 (1), 351.(15) Wong-Ekkabut, J.; Miettinen, M. S.; Dias, C.; Karttunen, M. Nat. Nanotechnol. 2010, 5 (8), 555. doi: 10.1038/nnano.2010.152
(16) Ge, Z. P.; Shi, Y. C.; Li, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 1655. [葛振朋, 石彦超, 李晓毅. 物理化学学报, 2013, 29, 1655.] doi: 10.3866/PKU.WHXB201305222
(17) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28, 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28, 573.] doi: 10.3866/PKU.WHXB201112191
(18) de Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomenon; Springer: New York, 2003.(19) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256 (5063), 1539. doi: 10.1126/science.256.5063.1539
(20) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070. [吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213
(21) Linke, H.; Alemán, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A. Phys. Rev. Lett. 2006, 96 (15), 154502. doi: 10.1103/PhysRevLett.96.154502
(22) Zheng, J.; Lennon, E. M.; Tsao, H. K.; Sheng, Y. J.; Jiang, S. J. Chem. Phys. 2005, 122 (21), 214702. doi: 10.1063/1.1908619
(23) Goldsmith, J.; Hinds, B. J. J. Phys. Chem. C 2011, 115 (39), 19158. doi: 10.1021/jp201467y
(24) Wang, Y.; Zhao, Y. J.; Huang, J. P. J. Phys. Chem. B 2011, 115 (45), 13275. doi: 10.1021/jp2069557
(25) Thakur, S. K.; Chauhan, S. Adv. Appl. Sci. Res. 2011, 2 (2), 208.(26) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
(27) Jorgensen,W. L.; Briggs, J. M.; Contreras, M. L. J. Phys. Chem. 1990, 94 (4), 1683. doi: 10.1021/j100367a084
(28) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins: Struct. Funct. Bioinf. 2010, 78 (8), 1950.(29) Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. J. Comput. Phys. 1999, 151 (1), 283. doi: 10.1006/jcph.1999.6201
(30) Shevade, A. V.; Jiang, S.; Gubbins, K. E. J. Chem. Phys. 2000, 113 (16), 6933. doi: 10.1063/1.1309012
(31) Pollack, M.; Fair, R. B.; Shenderov, A. D. Appl. Phys. Lett. 2000, 77 (11), 1725. doi: 10.1063/1.1308534
(32) Hu, L.; Gruner, G.; Gong, J.; Kim, C.; Hornbostel, B. Appl. Phys. Lett. 2007, 90 (9), 093124. doi: 10.1063/1.2561032
(33) Nakamura, Y.; Ohno, T. Chem. Phys. Lett. 2012, 539, 123.

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] CUI Peng, LIU Hai, YU Xue-Min, XIA Qing, LI Qing-Song. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Phys. Chim. Sin., 2018, 34(1): 65-72.
[3] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[4] HUANG Xiang-Feng, LIU Wan-Qi, XIONG Yong-Jiao, PENG Kai-Ming, LIU Jia, LU Li-Jun. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. Chim. Sin., 2018, 34(1): 49-64.
[5] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1905-1914.
[6] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[7] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[8] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[9] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[10] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1354-1365.
[11] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[12] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1214-1222.
[13] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1140-1148.
[14] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. Chim. Sin., 2017, 33(5): 869-885.
[15] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.