Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (9): 1778-1786    DOI: 10.3866/PKU.WHXB201407112
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction
PENG San, GUO Hui-Lin, KANG Xiao-Feng
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
Download:   PDF(1301KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nitrogen-doped graphene (NG) was prepared by chemical reduction of graphene oxide (GO) using dimethyl ketoxime (DMKO) as reducing and doping agents. The morphologies, structures, compositions, and electrocatalytic activities of the as-prepared materials were investigated using field-emission transmission electron microscopy (FETEM), ultraviolet- visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), zeta potential and nanoparticle analyses, cyclic voltammetry (CV), and the rotating disk electrode (RDE) method. The results showed that GO sheets were effectively reduced by DMKO. NG samples with different nitrogen contents were obtained by adjusting the mass ratio of GO to DMKO; the nitrogen contents were in the range 4.40%-5.89% (atomic fraction). NG-1, obtained using a GO/DMKO mass ratio of 1:0.7, showed excellent electrocatalytic activity in the oxygen reduction reaction (ORR) in an O2-saturated 0.1 mol·L-1 KOH solution. The peak current was 0.93 mA·cm-2, and the number of electrons transferred per O2 was 3.6; this was attributed to the increase in the number of ORR active sites in the presence of pyridinic-N. In addition, the electrocatalytic activity of NG was found to be dependent on the graphitic-N content, which determined the limiting current density, because of its higher electronic conductivity. The pyridinic-N content improved the onset potential, because of its lower overpotential for the ORR. NG therefore exhibited a high selectivity in the ORR, with good tolerance of methanol cross-over effects. It is therefore superior to commercial Pt/C catalysts.



Key wordsGraphene      Nitrogen doping      Oxygen reduction reaction      Electrocatalysis     
Received: 15 May 2014      Published: 11 July 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21175105, 21375104), Specialized Research Fund for the Doctoral Program of Higher Education of China (20126101110015), Natural Science Foundation of Shaanxi Province, China (2014JM2042), and State Key Laboratory of Analytical Chemistry for Life Science, China (SKLACLS1210).

Corresponding Authors: GUO Hui-Lin     E-mail: hlguo@nwu.edu.cn
Cite this article:

PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction. Acta Phys. -Chim. Sin., 2014, 30(9): 1778-1786.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201407112     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I9/1778

(1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
(2) Yang, R.; Leisch, J.; Strasser, P.; Toney, M. F. Chem. Mater. 2010, 22, 4712. doi: 10.1021/cm101090p
(3) Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902
(4) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012, 8, 3550.
(5) Zhang, L.; Zhang, J.;Wilkinson, D. P.;Wang, H. J. Power Sources 2006, 156, 171. doi: 10.1016/j.jpowsour.2005.05.069
(6) Zhang, M.; Dai, L. Nano Energy, 2012, 1, 514. doi: 10.1016/j.nanoen.2012.02.008
(7) Nallathambi, V.; Lee, J.W.; Kumaraguru, S. P.;Wu, G.; Popov, B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020
(8) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(9) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b
(10) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58
(11) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. doi: 10.1126/science.1137201
(12) Balandin, A. A.; Ghosh, S.; Bao,W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872 doi: 10.1021/nl0731872
(13) Avouris, P.; Chen, Z.; Perebeinos, V. Nat. Nanotechnol. 2007, 2, 605. doi: 10.1038/nnano.2007.300
(14) Wang, X.; Li, X.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang, H.; Guo, J.; Dai, H. Science 2009, 324, 768. doi: 10.1126/science.1170335
(15) Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L.; Xia, Z.; Dai, L.; Park, N.; Baek, J. B. Scientific Reports 2013, 3, 1810.
(16) Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c
(17) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u
(18) Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491. doi: 10.1039/c0jm00782j
(19) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
(20) Ma, G. X.; Zhao, J. H.; Zheng, J. F.; Zhu, Z. P. New Carbon Mater. 2012, 27, 258. [马贵香, 赵江红, 郑剑锋, 朱珍平. 新型炭材料, 2012, 27, 258.]
(21) Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. J. Mater. Chem. 2012, 22, 23506. doi: 10.1039/c2jm35547g
(22) Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.v22.17
(23) Li, N.;Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013
(24) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221
(25) Li, X.;Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f
(26) Su, P.; Guo, H. L.; Tian, L.; Ning, S. K. Carbon 2012, 50, 5351. doi: 10.1016/j.carbon.2012.07.001
(27) Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s
(28) Lin, Z.;Waller, G. H.; Liu, Y.; Liu, M.;Wong, C. P. Carbon 2013, 53, 130. doi: 10.1016/j.carbon.2012.10.039
(29) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.;Wu, G.; Lee, JW.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087
(30) Saidi,W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d
(31) Lai, L.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j

[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[6] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[7] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[8] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[9] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[10] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[11] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[12] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[13] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[14] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[15] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.