Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (10): 1847-1854    DOI: 10.3866/PKU.WHXB201407141
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Hydrodesulfurization Mechanisms of Thiophene Catalyzed by Au/Pd(111) Bimetallic Surfa
ZHANG Lian-Yang, SHI Wei, XIA Sheng-Jie, NI Zhe-Ming
Laboratory of Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Download:   PDF(1081KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The formation energy of different ensembles on Pd(111) surfaces containing N (N=1-4) Au atoms were investigated using a density functional theory model. The best model for exploring the adsorption of thiophene was selected, and the mechanism of competitive hydrodesulfurization on a Au/Pd(111) bimetallic surface was investigated. The results showed that Au/Pd(111) has the lowest formation energy, and adsorption at the hexagonal close-packed site is most stable when the thiophene plane is tilted at 30° to the Au/Pd(111) bimetallic surface with S atom. The reactions are exothermic, and desulfurization can be either direct or indirect. The direct desulfurization pathway has a low activation energy, but it is difficult to control the products. The indirect desulfurization pathway is the best fit for the cis-hydrogenation process; C―S cleavage has the highest reaction energy barrier, and is the rate-determining step. The activation energy barrier of the rate-determining step on Au/Pd(111) is lower than those on Au(111) and Pd(111). This indicates that bimetallic AuPd is more active than single Au and Pd in the hydrodesulfurization of thiophene.



Key wordsDensity functional theory      Thiophene      Au/Pd(111) bimetallic surface      Adsorption      Hydrodesulfurization     
Received: 03 June 2014      Published: 14 July 2014
MSC2000:  O641  
Corresponding Authors: NI Zhe-Ming     E-mail: jchx@zjut.edu.cn
Cite this article:

ZHANG Lian-Yang, SHI Wei, XIA Sheng-Jie, NI Zhe-Ming. Hydrodesulfurization Mechanisms of Thiophene Catalyzed by Au/Pd(111) Bimetallic Surfa. Acta Phys. Chim. Sin., 2014, 30(10): 1847-1854.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201407141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I10/1847

(1) Diaz, Y.; Sevilla, A.; Mónaco, A.; Méndez, F. J.; Rosales, P.; García, L.; Brito, J. L. Fuel 2013, 110, 235. doi: 10.1016/j.fuel.2013.01.044
(2) Liao, H.; Xu, X. L.; Chen,W. Q.; Shi, Q. J.; Liu,W. M.;Wang, X. Acta Phys. -Chim. Sin. 2012, 28 (12), 2924. [廖辉, 徐香兰, 谌伟庆, 石秋杰, 刘文明, 王翔. 物理化学学报, 2012, 28 (12), 2924.] doi: 10.3866/PKU.WHXB201209281
(3) Villasana, Y.; Ruscio-Vanalesti, F.; Pfaff, C.; Méndez, F. J.; Luis-Luis, M. Á.; Brito, J. L. Fuel 2013, 110, 259. doi: 10.1016/j.fuel.2012.11.055
(4) Zhao, D. S.; Li, F. T.; Zhou, E. P.; Sun, Z. M. Chem. Res. Chin. Univ. 2008, 24, 96. doi: 10.1016/S1005-9040(08)60020-3
(5) Ma, C. Y.; Li, X. H.; Jin, M. S.; Liao,W. P.; Guan, R. G.; Suo, Z. H. Chin. J. Catal. 2007, 28 (6), 535. [麻春艳, 李新华, 金明善, 廖卫平, 管仁贵, 索掌怀. 催化学报, 2007, 28 (6), 535.] (6) Parola, V. L.; Testa, M. L.; Venezia, A. M. Appl. Catal. B: Environ. 2012, 119 -120, 248. (7) Evangelisti, C.; Schiavi, E.; Aronica, L. A.; Caporusso, A. M.; Vitulli, G.; Bertinetti, L.; Martra, G.; Balerna, A.; Mobilio, S. J. Catal. 2012, 286, 224. doi: 10.1016/j.jcat.2011.11.007
(8) Boscoboinik, J. A.; Plaisance, C.; Neurock, M.; Tysoe,W. T. Phys. Rev. B 2008, 77 (4), 045422. doi: 10.1103/ PhysRevB.77.045422
(9) Gu, H. Z.; Xu, X. S.; Chen, A. A.; Ao, P.; Yan, X. H. Catal. Commun. 2013, 41, 65. doi: 10.1016/j.catcom.2013.07.015
(10) Pongthawornsakun, B.; Fujita, S.; Arai, M.; Mekasuwandumrong, O.; Panpranot, J. Appl. Catal. A-Gen. 2013, 467 (2), 132. (11) Suo, Z. H.; Ma, C. Y.; Liao,W. P.; Jin, M. S.; Lv, H. Y. Fuel Pro. Tech. 2011, 92, 1549. doi: 10.1016/j.fuproc.2011.03.018
(12) Zhang, J.; Jin, H. M.; Sullivan, M. B.; Chiang, F.; Lim, H.;Wu, P. Phys. Chem. Chem. Phys. 2009, 11 (9), 1441. doi: 10.1039/b814647k
(13) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Struct. Chem. 2010, 29 (1), 93. (14) Zhu, H. Y.; Lu, X. Q.; Guo,W. Y.; Li, L. F.; Zhao, L. M.; Shan, H. H. J. Mol. Catal. A-Chem. 2012, 363-364, 18. (15) Ni, Z. M.; Shi,W.; Xia, M. Y.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (10), 2353. [倪哲明, 施炜, 夏明玉, 薛继龙. 高等学校化学学报, 2013, 34 (10), 2353.] (16) Peyghan, A. A.; Baei, M. T.; Torabi, P.; Hashemian, S. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1172. doi: 10.1080/10426507.2012.737879
(17) Zheng, X. Z.; Zhang, Y. H.; Huang, S. P.; Liu, H.;Wang, P.; Tian, H. P. Comput. Theor. Chem. 2012, 979, 64. doi: 10.1016/j.comptc.2011.10.016
(18) Zhu, H. Y.; Guo,W. Y.; Li, M.; Zhao, L. M.; Li, S. R.; Li, Y.; Lu, X. Q.; Shan, H. H. ACS Catal. 2011, 1, 1498. doi: 10.1021/cs2002548
(19) Moses, P. G.; Hinnemann, B.; Topsoe, H.; Norskov, J. K. J. Catal. 2009, 268 (2), 201. doi: 10.1016/j.jcat.2009.09.016
(20) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
(21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
(22) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327(3/4), 125. (23) Delley, B. J. Phys. Chem. 1996, 100 (15), 6107. doi: 10.1021/jp952713n
(24) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Struct. Chem. 2010, 29 (3), 365. (25) Besenbacher, F.; Brorson, M.; Clausen, B. S.; Helveg, S.; Hinnemann, B.; Kibsgaard, J.; Lauritsen, J. V.; Moses, P. G.; Norskov J. K.; Topsøe, H. Catal. Today 2008, 130 (1), 86. doi: 10.1016/j.cattod.2007.08.009
(26) Moses, P. G.; Hinnemann, B.; Topsøe, H.; Nørskov, J. K. J. Catal. 2007, 248 (2), 188. doi: 10.1016/j.jcat.2007.02.028
(27) Yao, X. Q.; Li, Y.W.; Jiao, H. J. J. Mol. Struct. –Theochem 2005, 726 (1-3), 81. doi: 10.1016/j.theochem.2005.02.074
(28) Huang, Y. L.; Liu, Z. P. Acta Phys. -Chim. Sin. 2008, 24 (9), 1662. [黄永丽, 刘志平. 物理化学学报, 2008, 24 (9), 1662.] doi: 10.3866/PKU.WHXB20080923

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[7] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[8] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[9] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[12] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[13] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[14] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[15] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.