Please wait a minute...
Acta Phys. -Chim. Sin.  2014, Vol. 30 Issue (10): 1855-1860    DOI: 10.3866/PKU.WHXB201407151
ELECTROCHEMISTRY AND NEW ENERGY     
Fabrication and Electrochemical Behavior of a Pure-Phase Li2MnO3 Thin Film for Cathode Material of Li-Ion Batteries
ZHENG Jie-Yun, WANG Rui, LI Hong
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(984KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Li2MnO3 materials were synthesized by solid state reactions. A series of Li2MnO3 thin films were fabricated at different temperatures under O2 by pulsed laser deposition (PLD) using a home-made Li2MnO3 target. The structure and morphology of the as- prepared Li2MnO3 thin films were characterized by X- ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Their electrochemical performance was also investigated. The results show that the crystallinity of the thin films increased with an increase in deposition temperature, and the thin film electrode prepared at lower than 25 ℃ did not work well. The highest electrochemical activity was achieved by the thin film deposited at 400 ℃, and this result is consistent with our previous report on powder materials. The Li2MnO3 thin film electrodes deposited at 400 and 600 ℃ exhibited lower discharge voltage decay upon cycling compared with the powder electrode.



Key wordsLi2MnO3 thin film      Cathode material      Pulsed laser deposition      Potential decay      Li-ion battery     
Received: 17 March 2014      Published: 15 July 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2012CB932900) and "Strategic Priority Research Program" of Chinese Academy of Sciences (XDA09010101).

Corresponding Authors: LI Hong     E-mail: hli@iphy.ac.cn
Cite this article:

ZHENG Jie-Yun, WANG Rui, LI Hong. Fabrication and Electrochemical Behavior of a Pure-Phase Li2MnO3 Thin Film for Cathode Material of Li-Ion Batteries. Acta Phys. -Chim. Sin., 2014, 30(10): 1855-1860.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201407151     OR     http://www.whxb.pku.edu.cn/Y2014/V30/I10/1855

(1) (a) Tarascon, J.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(b) Armand, M.; Tarascon, J. M. Nature 2008, 451 (7179), 652. (2) Zu, C. X.; Li, H. Energy & Environmental Science 2011, 4 (8), 2614. doi: 10.1039/c0ee00777c
(3) Numata, K.; Sakaki, C.; Yamanaka, S. Chem. Lett. 1997, 26 (8), 725. (4) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Journal of the Electrochemical Society 2002, 149(6), A778. (5) Kim, J. S.; Johnson, C. S.; Thackeray, M. M. Electrochemistry Communications 2002, 4 (3), 205. doi: 10.1016/S1388-2481(02)00251-5
(6) (a) Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. Electrochemistry Communications 2004, 6(10), 1085. doi: 10.1016/j.elecom.2004.08.002
(b) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S.A. J.Mater. Chem. 2007, 17 (30), 3112. (7) (a) Johnson, C. S.; Li, N. C.; Lefief, C.; Vaughey, J. T.; Thackeray, M. M. Chemistry of Materials 2008, 20 (19), 6095. doi: 10.1021/cm801245r
(b) Croy, J. R.; Kim, D.; Balasubramanian, M.; Gallagher, K.; Kang, S. H.; Thackeray, M. M. Journal of the Electrochemical Society 2012, 159 (6), A781. (8) Yu, C.; Li, G. S.; Guan, X. F.; Zheng, J.; Luo, D.; Li, L. P. Physical Chemistry Chemical Physics 2012, 14 (35), 12368. doi: 10.1039/c2cp41881a
(9) Yu, X.; Lyu, Y.; Gu, L.;Wu, H.; Bak, S. M.; Zhou, Y.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.W.; Yang, X. Q. Adv. Energy Mater. 2013, 4 (5), 1300950. (10) Yu, D. Y.W.; Yanagida, K.; Kato, Y.; Nakamura, H. Journal of the Electrochemical Society 2009, 156 (6), A417. (11) Wang, R.; He, X. Q.; He, L. H.;Wang, F.W.; Xiao, R. J.; Gu, L.; Li, H.; Chen, L. Q. Adv. Energy Mater. 2013, 3 (10), 1358. doi: 10.1002/aenm.v3.10
(12) Hirayama, M.; Ido, H.; Kim, K.; Cho,W.; Tamura, K.; Mizuki, J.; Kanno, R. Journal of the American Chemical Society 2010, 132 (43), 15268. doi: 10.1021/ja105389t
(13) Zheng, Y. M.; Taminato, S.; Suzuki, K.; Hirayama, M.; Kanno, R. Thin Solid Films 2012, 520 (15), 4889. doi: 10.1016/j.tsf.2012.03.029
(14) Yan, B. G.; Liu, J. C.; Song, B. H.; Xiao, P. F.; Lu, L. Scientific Reports 2013, 3, 3332. doi: 10.1038/srep03332
(15) Jacob, C.; Jian, J.; Zhu, Y. Y.; Su, Q.;Wang, H. Y. Journal of Materials Chemistry A 2014, 2 (7), 2283. doi: 10.1039/c3ta14413e
(16) Fischer, J.; Adelhelm, C.; Bergfeldt, T.; Chang, K.; Ziebert, C.; Leiste, H.; Stuber, M.; Ulrich, S.; Music, D.; Hallstedt, B.; Seifert, H. J. Thin Solid Films 2013, 528, 217. doi: 10.1016/j.tsf.2012.08.058
(17) (a) Julien, C. M.; Massot, M. Mat. Sci. Eng. B-Solid 2003, 100(1), 69. doi: 10.1016/S0921-5107(03)00077-1
(b) Yu, D. Y.W.; Yanagida, K. Journal of the Electrochemical Society 2011, 158 (9), A1015. (18) Park, S. H.; Sato, Y.; Kim, J. K.; Lee, Y. S. Mater. Chem. Phys. 2007, 102 (2-3), 225. doi: 10.1016/j.matchemphys.2006.12.008
(19) Wang, R. Investigation on High Capacity Cathode Materials for Li-Ion Batteries. Ph. D. Dissertation, The University of Chinese Academy of Sicences, Beijing, 2013. [汪锐. 锂离子电池高容量正极材料研究[D]. 北京: 中国科学院大学, 2013.] (20) Sun, J. P.; Tang, K.; Yu, X. Q.; Li, H.; Huang, X. J. Thin Solid Films 2009, 517 (8), 2618. doi: 10.1016/j.tsf.2008.10.054

[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[4] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[5] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[6] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[7] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[8] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.
[9] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[10] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494.
[11] Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1056-1061.
[12] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 717-722.
[13] Xue-Mei. SUN,Li-Jun. GAO. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1521-1526.
[14] Xiao-Fei. SUN,You-Long. XU,Xiao-Yu. ZHENG,Xiang-Fei. MENG,Peng. DING,Hang. REN,Long. LI. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1513-1520.
[15] Xia-Xing. SHI,Shi-Xuan. LIAO,Bing. YUAN,Yan-Jun. ZHONG,Ben-He. ZHONG,Heng. LIU,Xiao-Dong. GUO. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1527-1534.