Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (10): 1883-1894    DOI: 10.3866/PKU.WHXB201407161
ELECTROCHEMISTRY AND NEW ENERGY     
Inhibition Effect of Bamboo Leaf Extract on the Corrosion of Aluminum in HCl Solution
LI Xiang-Hong1, DENG Shu-Duan2, XIE Xiao-Guang3, DU Guan-Ben2
1. Faculty of Science, Southwest Forestry University, Kunming 650224, P. R. China;
2. Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, P. R. China;
3. School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
Download:   PDF(1014KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A bamboo leaf inhibitor (designated PSLE) was extracted from Phyllostachys sulphurea (Corr. Riviere) leaves using a series of C2H5OH-water solutions (20%-80% (volume fraction)). The solutions were characterized by Fourier transform infrared (FTIR) spectroscopy and ultraviolet- visible (UV-Vis) spectrophotometry. The total flavonoid content of the PSLE was determined. The inhibition effect of PSLE toward the corrosion of aluminum in HCl solution was studied by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Density functional theory (DFT) quantum chemical calculations including solvent effects were used to investigate the adsorption of light by the two major components vientin and isovientin. The results show that PSLE is a good inhibitor and the adsorption of PSLE on the aluminum surface obeys the Langmuir adsorption isotherm. The inhibition efficiency increases with PSLE concentration while it decreases with temperature and HCl concentration. A good correlation exists between the total flavonoid content and the inhibition performance. This implies that the flavonoids are the major contributor to inhibition activity. PSLE behaves as a cathodic inhibitor. The EIS spectra are characterized by one large capacitive loop at high frequencies followed by a large inductive loop at low frequency values. The impedance value increases with increasing inhibitor concentration. SEM results confirm that the corrosion of aluminum is retarded remarkably by PSLE. The quantum calculation results indicate that the adsorption center of either vientin or isovientin is mainly a flavonoid backbone structure (FBS).



Key wordsAluminium      Hydrochloric acid      Bamboo leaf extract      Corrosion inhibition      Adsorption      Quantum chemical calculation     
Received: 28 April 2014      Published: 16 July 2014
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51161023).

Corresponding Authors: LI Xiang-Hong     E-mail: xianghong-li@163.com
Cite this article:

LI Xiang-Hong, DENG Shu-Duan, XIE Xiao-Guang, DU Guan-Ben. Inhibition Effect of Bamboo Leaf Extract on the Corrosion of Aluminum in HCl Solution. Acta Phys. Chim. Sin., 2014, 30(10): 1883-1894.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201407161     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I10/1883

(1) Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Berrabah, M. Acta Phys. -Chim. Sin. 2009, 25, 1254. [Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Berrabah, M. 物理化学学报, 2009, 25, 1254.] doi: 10.3866/PKU.WHXB20090709
(2) Raja, P. B.; Rahim, A. A.; Osman, H.; Awang, K. Acta Phys. -Chim. Sin. 2010, 26, 2171. [Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah. 物理化学学报, 2010, 26, 2171.] doi: 10.3866/PKU.WHXB20100646
(3) El Hosary, A. A.; Saleh R. M.; Shams El Din, A. M. Corrossion Sci. 1972, 12, 897. doi: 10.1016/S0010-938X(72)80098-2
(4) Avwiri, G. O.; Lgho, F. O. Mater. Lett. 2003, 57, 3705. doi: 10.1016/S0167-577X(03)00167-8
(5) Oguzie, E. E.; Onuchukwu, A. I.; Okafor, P. C.; Ebenso, E. E. Pig. Resin. Technol. 2006, 35 (2), 63. doi: 10.1108/03699420610652340
(6) El-Etre, A. Y. Corrosion Sci. 2003, 45, 2485. doi: 10.1016/S0010-938X(03)00066-0
(7) Oguzie, E. E. Corrosion Sci. 2007, 49, 1527. doi: 10.1016/j.corsci.2006.08.009
(8) Umoren, S. A.; Obot, I. B.; Ebenso, E. E.; Obi-Egbedi, N. O. Desalination 2009, 247, 561. doi: 10.1016/j.desal.2008.09.005
(9) Deng, S. D.; Li, X. H. Corrosion Sci. 2012, 64, 253. doi: 10.1016/j.corsci.2012.07.017
(10) Lu, B. Y.;Wu, X. Q.; Tie, X.W.; Zhang, Y.; Zhang, Y. Food Chem. Toxicol. 2005, 43, 783. doi: 10.1016/j.fct.2005.01.019
(11) Lu, B. Y.;Wu, X. Q.; Shi, J. Y.; Dong, Y. J.; Zhang, Y. Food Chem. Toxicol. 2006, 44, 1739. doi: 10.1016/j.fct.2006.05.012
(12) Li, X. H.; Deng, S. D.; Fu, H. Corrosion Sci. 2012, 62, 163. doi: 10.1016/j.corsci.2012.05.008
(13) Deng, S. D.; Li, X. H.; Fu, H. Chem. Indust. Forest Prod. 2010, 30, 81. [邓书端, 李向红, 付惠. 林产化学与工业, 2010, 30, 81.] (14) Li, X. H.; Deng, S. D. Corrosion Sci. 2012, 65, 299. doi: 10.1016/j.corsci.2012.08.033
(15) Li, X. H.; Deng, S. D.; Fu, H. Acta Phys. -Chim. Sin. 2011, 27, 2841. [李向红, 邓书端, 付惠. 物理化学学报, 2011, 27, 2841.] doi: 10.3866/PKU.WHXB20112841
(16) Materials Studio 7.0. Accelrys Inc.: San Diego, CA, 2013. (17) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033
(18) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(19) Klamt, A.; Schüürmann, G. J. Chem. Soc. Perkin Trans. 1993, 2, 799. (20) Jing,W. J. Information Develop Economy 2009, 19, 139. (21) Su, C. H.;Wang, F. S.; Ding, Y. L. China Forestry Sci. Tech. 2010, 24, 87. (22) Deng, Q. Y.; Liu, L.; Deng, H. M. Principles of Spectrometric Identification, 2nd ed.; Science Press: Beijing, 2007; p 37. (23) Kuang, H. X. Traditional Chinese Medicine Chemistry; Traditional Chinese Medicine Press: Beijing, 2003; p 155. (24) Fuchs-Godec, R.; Dole?ek,V. Colloids Surf. A 2004, 244, 73. doi: 10.1016/j.colsurfa.2004.05.015
(25) Cano, E.; Polo, J. L.; La Iglesia, A.; Bastidas, J. M. Adsorption 2004, 10, 219. doi: 10.1023/B:ADSO.0000046358.35572.4c
(26) Zhao, J. M.; Li, J. Acta Phys. -Chim. Sin. 2012, 28, 623. [赵景茂, 李俊. 物理化学学报, 2012, 28, 623.] doi: 10.3866/PKU.WHXB201112293
(27) Oguzie, E. E.; Unaegbu, C.; Ogukwea, C. N.; Okolue, B. N.; Onuchuku, A. I. Mater. Chem. Phys. 2004, 84, 363. doi: 10.1016/j.matchemphys.2003.11.027
(28) Deng, S. D.; Li, X. H.; Xie, X. G. Corrosion Sci. 2014, 80, 276. doi: 10.1016/j.corsci.2013.11.041
(29) Zhang, Q. B.; Hua, Y. X. Mater. Chem. Phys. 2010, 119, 57. doi: 10.1016/j.matchemphys.2009.07.035
(30) Martinez, S.; Stern, I. Appl. Surf. Sci. 2002, 199, 83. doi: 10.1016/S0169-4332(02)00546-9
(31) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M. T. Corrosion Sci. 2009, 51, 1073. doi: 10.1016/j.corsci.2009.02.011
(32) Cai, Q. H.; Shan, Y. K.; Lu, B.; Yuan, X. H. Corrosion 1993, 49, 486. doi: 10.5006/1.3316077
(33) de Assunção Araújo Pereira, S. S.; Pêgas, M. M.; Fernández, T. L.; Magalhães, M.; Schöntag, T. G.; Lago, D. C.; de Senna, L. F.; D'Elia, E. Corrosion Sci. 2012, 65, 360. doi: 10.1016/j.corsci.2012.08.038
(34) Obot, I. B.; Obi-Egbedi, N. O. Corrosion Sci. 2010, 52, 282. doi: 10.1016/j.corsci.2009.09.013
(35) Shukla, S. K.; Quraishi, M. A. Corrosion Sci. 2010, 52, 314. doi: 10.1016/j.corsci.2009.09.017
(36) Talati, J. D.; Gandhi, D. K. Corrosion Sci. 1983, 23, 1315. doi: 10.1016/0010-938X(83)90081-1
(37) Yurt, A.; Ulutas, S.; Dal, H. Appl. Surf. Sci. 2006, 253, 919. doi: 10.1016/j.apsusc.2006.01.026
(38) Li, X. H.; Deng, S. D.; Fu, H. Corrosion Sci. 2011, 53, 1529. (39) Cao, C. N. Corrosion Electrochemistry Mechanism, 3rd ed.; Chemical Industrial Engineering Press: Beijing, 2008; p 197. (40) Oguzie, E. E.; Okolue, B. N.; Ebenso, E. E.; Onuoha, G. N.; Onuchukwu, A. I. Mater. Chem. Phys. 2004, 87, 394. doi: 10.1016/j.matchemphys.2004.06.003
(41) Khaled, K. F.; Al-Qahtani, M. M. Mater. Chem. Phys. 2009, 113, 150. doi: 10.1016/j.matchemphys.2008.07.060
(42) Li, X. H.; Deng, S. D.; Xie, X. G. Corrosion Sci. 2014, 81, 162. doi: 10.1016/j.corsci.2013.12.021
(43) Garrigues, L.; Pebere, N.; Dabosi, F. Electrochim. Acta 1996, 41, 1209. doi: 10.1016/0013-4686(95)00472-6
(44) Noor, E. A. Mater. Chem. Phys. 2009, 114, 533. doi: 10.1016/j.matchemphys.2008.09.065
(45) Bessone, J.; Mayer, C.; Jutter, K.; Lorenz,W. Electrochim. Acta 1983, 28, 171. doi: 10.1016/0013-4686(83)85105-6
(46) Brett, C. M. A. Corrosion Sci. 1992, 33, 203. doi: 10.1016/0010-938X(92)90145-S
(47) Burstein, G. T.; Cinderey, R. J. Corrosion Sci. 1992, 32, 1195. (48) Metlkoš -Hukovi?, M.; Babi?, R.; Grubac, Z. J. Appl. Electrochem. 1998, 28, 433. doi: 10.1023/A:1003200808093
(49) Lebrini, M.; Lagrenée, M.; Vezin, H.; Traisnel, M.; Bentiss, F. Corrosion Sci. 2007, 49, 2254. doi: 10.1016/j.corsci.2006.10.029
(50) Amin, M. A.; Mohsen, Q.; Hazzai, O. A. Mater. Chem. Phys. 2009, 114, 908. doi: 10.1016/j.matchemphys.2008.10.057
(51) Lenderink, H. J.W.; Linden, M. V. D.; DeWit, J. H.W. Electrochim. Acta 1993, 38, 1989. doi: 10.1016/0013-4686(93)80329-X
(52) Kilner, C. A.; Halcrow, M. A. Polyhedron 2006, 25, 235. doi: 10.1016/j.poly.2005.06.034
(53) Beaufort, L.; Benvenuti, F.; Noels, A. F. I. J. Mol. Catal. AChem. 2006, 260, 210. doi: 10.1016/j.molcata.2006.07.005
(54) Abd El Rehim, S. S.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2001, 70, 64. doi: 10.1016/S0254-0584(00)00468-5
(55) Osório,W. R.; Moutinho, D. J.; Peixoto, L. C.; Ferreira, I. L.; Garcia, A. Electrochim. Acta 2011, 56, 8412. doi: 10.1016/j.electacta.2011.07.028
(56) Lagrenée, M.; Mernari, B.; Bouanis, M.; Traisnel, M.; Bentiss, F. Corrosion Sci. 2002, 44, 573. doi: 10.1016/S0010-938X(01)00075-0
(57) Lorenz,W. J.; Mansfeld, F. Corrosion Sci. 1981, 21, 647. doi: 10.1016/0010-938X(81)90015-9
(58) Tang, H. G.; Zheng,W. D.; Chen, Z. D. Chin. Agri. Sci. Bull. 2005, 21, 114. (59) Li, H. Y.; Sun, J. Y.; Zhang, J. M.; Shou, D. Chin. Traditional Patent Medi. 2004, 26, 208. (60) Li, X. H.; Deng, S. D.; Fu, H.; Xie, X. G. Corrosion Sci. 2014, 78, 29. doi: 10.1016/j.corsci.2013.08.025
(61) Gao, Z. Q.; Xu, Q.; Song, Z. R.;Wang, L. Chem. World 2008, 49, 439. (62) Fukui, K. Angewandte Chemie International Edition in English 1982, 21, 801. (63) Li, X. H.; Xie, X. G. Acta Phys. -Chim. Sin. 2013, 29, 2221. [李向红, 谢小光. 物理化学学报, 2013, 29, 2221.] doi: 10.3866/PKU.WHXB201307301

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.