Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (10): 1876-1882    DOI: 10.3866/PKU.WHXB201407172
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors
TANG Jia-Yong1, CAO Pei-Qi1, FU Yan-Bao2, LI Peng-Hui1, MA Xiao-Hua1
1. Department of Materials Science, Fudan University, P. R. Shanghai 200433, P. R. China;
2. Environmental and Energy Technologies Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
Download:   PDF(1228KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Amanganese dioxide (MnO2)-graphene composite material with a unique structure consisting of MnO2 surrounded by graphene sheets was prepared by a simple hydrothermal and thermal decomposition method. The morphology and structure of the obtained materials were examined by scanning electron microscopy, transition electron microscopy, Raman spectroscopy, X-ray diffraction, and N2 adsorption-desorption. Electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge- discharge and electrochemical impedance spectroscopy. The specific surface area increased from 109 to 168 m2·g-1 for the composite containing 15% (w) graphene. The specific capacitance also increased from 294 to 454 F·g-1 at a current density of 0.2 A·g-1 in an aqueous electrolyte supercapacitor. Moreover, after 2000 cycles of a galvanostatic charge-discharge test, the hybrid electrode still had excellent cycle stability (92% retention rate).



Key wordsManganese oxide      Graphene      Composite      Supercapacitor      Hydrothermal method      Energy storage     
Received: 06 May 2014      Published: 17 July 2014
MSC2000:  O646  
  TB333  
Fund:  

The project was supported by the Ministry of Science and Technology of China (51201035).

Corresponding Authors: MA Xiao-Hua     E-mail: xhma@fudan.edu.cn
Cite this article:

TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors. Acta Phys. Chim. Sin., 2014, 30(10): 1876-1882.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201407172     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I10/1876

(1) Chen, Z.; Qin, Y.;Weng, D.; Xiao, Q.; Peng, Y.;Wang, X.; Li, H.;Wei, F.; Lu, Y. Advanced Functional Materials 2009, 19, 3420. doi: 10.1002/adfm.v19:21
(2) Winter, M.; Brodd, R. J. Chemical Reviews 2004, 104 (10), 4245. doi: 10.1021/cr020730k
(3) Burke, A. Journal of Power Sources 2000, 91 (1), 37. doi: 10.1016/S0378-7753(00)00485-7
(4) Wang, G.; Zhang, L.; Zhang, J. Chemical Society Reviews 2012, 41 (2), 797. doi: 10.1039/c1cs15060j
(5) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chemical Reviews 2011, 111 (5), 3577. doi: 10.1021/cr100290v
(6) Yang, G.; Xu, C.; Li, H. Chem. Commun. 2008, 48, 6537. (7) Qu, D. Journal of Power Sources 2002, 109 (2), 403. doi: 10.1016/S0378-7753(02)00108-8
(8) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221
(9) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Letters 2008, 8 (10), 3498. (10) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (2), 378. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28 (2), 378.] doi: 10.3866/PKU.WHXB201112021
(11) Lu, X.; Dou, H.; Yuan, C.; Yang, S.; Hao, L.; Zhang, F.; Shen, L.; Zhang, L.; Zhang, X. Journal of Power Sources 2012, 197, 319. doi: 10.1016/j.jpowsour.2011.08.112
(12) Liu, Y.; Yan, D.; Zhuo, R.; Li, S.;Wu, Z.;Wang, J.; Ren, P.; Yan, P.; Geng, Z. Journal of Power Sources 2013, 242, 78. doi: 10.1016/j.jpowsour.2013.05.062
(13) Wang, Y.; Hu, Z.;Wu, H. Materials Chemistry and Physics 2011, 126 (3), 580. doi: 10.1016/j.matchemphys.2011.01.022
(14) Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; Gong, H.; Fan, H. J. Advanced Materials 2011, 23 (18), 2076. doi: 10.1002/adma.v23.18
(15) Wei,W.; Cui, X.; Chen,W.; Ivey, D. G. Chemical Society Reviews 2011, 40 (3), 1697. doi: 10.1039/c0cs00127a
(16) Long, J.W.; Bélanger, D.; Brousse, T.; Sugimoto,W.; Sassin, M. B.; Crosnier, O. Mrs Bull. 2011, 36 (7), 513. (17) Toupin, M.; Brousse, T.; Bélanger, D. Chemistry of Materials 2002, 14 (9), 3946. (18) Kim, J.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Nano Letters 2011, 11 (7), 2611. (19) Li, P. H.; Ma, X. H. Battery Bimonthly 2013, No. 6, 247. [李鹏辉, 马晓华. 电池, 2013, No. 6, 247.] (20) Zhang, X. Y.; Ran, F.; Fan, H. L.; Kong, L. B.; Kang, L. Acta Phys. -Chim. Sin. 2014, 30 (5), 881. [张宣宣, 冉奋, 范会利, 孔令斌, 康龙. 物理化学学报, 2014, 30 (5), 881.] doi: 10.3866/PKU.WHXB201403061
(21) Geim, A. K. Science 2009, 324 (5934), 1530. (22) Geim, A. K.; Novoselov, K. S. Nature Materials 2007, 6 (3), 183. doi: 10.1038/nmat1849
(23) Yan, J.; Fan, Z.;Wei, T.; Qian,W.; Zhang, M.;Wei, F. Carbon 2010, 48 (13), 3825. doi: 10.1016/j.carbon.2010.06.047
(24) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. Carbon 2011, 49 (9), 2917. doi: 10.1016/j.carbon.2011.02.068
(25) Yu, G.; Hu, L.; Vosgueritchian, M.;Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Letters 2011, 11(7), 2905. doi: 10.1021/nl2013828
(26) Subramanian, V.; Zhu, H.;Wei, B. Electrochemistry Communications 2006, 8 (5), 827. doi: 10.1016/j.elecom.2006.02.027
(27) Chen, D.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. ACS Applied Materials & Interfaces 2011, 3 (8), 3078. doi: 10.1021/am200592r
(28) Ma, J.; Cheng, Q.; Pavlinek, V.; Saha, P.; Li, C. New Journal of Chemistry 2013, 37, 722. doi: 10.1039/C2NJ40880E
(29) Tang, X.; Liu, Z.; Zhang, C.; Yang, Z.;Wang, Z. Journal of Power Sources 2009, 193 (2), 939. doi: 10.1016/j.jpowsour.2009.04.037
(30) Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969
(31) Gong, Y.; Yang, S.; Liu, Z.; Ma, L.; Vajtai, R.; Ajayan, P. M. Advanced Materials 2013, 25, 3979. doi: 10.1002/adma.201301051
(32) Wang, D.; Li, F.;Wu, Z.; Ren,W.; Cheng, H. Electrochemistry Communications 2009, 11 (9), 1729. (33) Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P. The Journal of Physical Chemistry C 2008, 112 (34), 13134. doi: 10.1021/jp804924f
(34) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angewandte Chemie International Edition 2009, 48 (42), 7752. (35) Subramanian, V.; Zhu, H.;Wei, B. Journal of Power Sources 2006, 159 (1), 361. doi: 10.1016/j.jpowsour.2006.04.012
(36) Mao, L.; Zhang, K.; Chan, H. S. O.;Wu, J. Journal of Materials Chemistry 2012, 22 (1), 80. doi: 10.1039/c1jm12869h
(37) Lee, H.; Kang, J.; Cho, M. S.; Choi, J.; Lee, Y. Journal of Materials Chemistry 2011, 21 (45), 18215. doi: 10.1039/c1jm13364k
(38) Zhang, L. L.; Zhou, R.; Zhao, X. S. Journal of Materials Chemistry 2010, 20 (29), 5983. doi: 10.1039/c000417k
(39) Xu, M.; Kong, L.; Zhou,W.; Li, H. The Journal of Physical Chemistry C 2007, 111 (51), 19141. doi: 10.1021/jp076730b
(40) Fan, Z.; Yan, J.;Wei, T.; Zhi, L.; Ning, G.; Li, T.;Wei, F. Advanced Functional Materials 2011, 21 (12), 2366. doi: 10.1002/adfm.v21.12

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[6] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[8] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[9] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[10] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[12] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[13] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[14] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[15] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.