Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (10): 1903-1908    DOI: 10.3866/PKU.WHXB201407173
CATALYSIS AND SURFACE SCIENCE     
Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity
CUI Hai-Qin, JING Li-Qiang, XIE Ming-Zheng, LI Zhi-Jun
Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
Download:   PDF(631KB) Export: BibTeX | EndNote (RIS)      

Abstract  

TiO2 rutile nanorods were successfully synthesized by a hydrochloric acid-modified hydrothermal process, using butyl titanate as the titanium source, followed by hydrogenation treatment. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis near infrared (NIR) diffuse reflection spectroscopy (UV- Vis- NIR DRS), electron paramagnetic resonance (EPR), surface photovoltage spectroscopy (SPS), and the photodegradation of gas-phase acetaldehyde and liquid-phase phenol to evaluate the photocatalytic activity of the catalysts. The results show that the photoresponse of TiO2 gradually expands from the ultraviolet region to the visible and near-infrared regions upon increasing the hydrogenation time at high temperature. Its color changed from white to gray, and this is attributed to the introduction of Ti3+ defects and oxygen vacancies. Based on surface photovoltage spectroscopy responses and the amount of hydroxyl radicals produced, hydrogenation treatment promoted the photogenerated charge separation significantly. This is responsible for the improved photocatalytic degradation activity toward gasphase acetaldehyde and liquid-phase phenol under visible or ultraviolet irradiation. Therefore, a specific amount of defects and/or vacancies can induce new and appropriate surface states below the conduction band of the TiO2 samples. However, if the amount of introduced defects or vacancies is too high, low-level surface states are produced and this is not favorable for photogenerated charge separation, and detrimental to photocatalytic reactions.



Key wordsTiO2      Hydrogenation treatment      Defect      Photogenerated charge separation      Photocatalysis     
Received: 24 June 2014      Published: 17 July 2014
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21071048) and Research Project of the Ministry of Education of China (213011A).

Corresponding Authors: JING Li-Qiang     E-mail: jinglq@hlju.edu.cn
Cite this article:

CUI Hai-Qin, JING Li-Qiang, XIE Ming-Zheng, LI Zhi-Jun. Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity. Acta Phys. Chim. Sin., 2014, 30(10): 1903-1908.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201407173     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I10/1903

(1) Lin, Y. M.; Li, D. Z.; Hu, J. H.; Xiao, G. C.;Wang, J. X.; Li,W. J.; Fu, X. Z. J. Phys. Chem. C 2012, 116, 5764. doi: 10.1021/jp211222w
(2) Hoffmann, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(3) Gonzalez-Urbina, L.; Baert, K.; Kolaric, B.; Perez-Moreno, J.; Clays, K. Chem. Rev. 2012, 112, 2268. doi: 10.1021/cr200063f
(4) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012, 112, 5919. doi: 10.1021/cr3002092
(5) Ollis, D. F.; Pelizzetti, E.; Serpone, N. Environ. Sci. Technol. 1991, 25, 1522. doi: 10.1021/es00021a001
(6) Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. J. Phys. Chem. C 2010, 114, 16475. doi: 10.1021/jp104317x
(7) Luan, Y. B.; Feng, Y. J.;Wang,W. X.; Xie, M. Z.; Jing, L. Q. Acta Phys. -Chim. Sin. 2013, 29, 2655. [栾云博, 冯玉杰, 王文欣, 谢明政, 井立强. 物理化学学报, 2013, 29, 2655.] doi: 10.3866/PKU.WHXB201310141
(8) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. (9) Wang,W.; Ni, Y.; Lu, C. H.; Xu, Z. Z. RSC Adv. 2012, 2, 8286. doi: 10.1039/c2ra21049e
(10) Pei, Z. X.; Ding, L. Y.; Lin, H.;Weng, S. X.; Zheng, Z. Y.; Hou, Y. D.; Liu, P. J. Mater. Chem. A 2013, 1, 10099. doi: 10.1039/c3ta12062g
(11) Grabstanowicz, L. R.; Gao, S.; Li, T.; Rickard, R. M.; Rajh, T.; Liu, D. J.; Xu, T. Inorg. Chem. 2013, 52, 3884. doi: 10.1021/ic3026182
(12) Zuo, F.;Wang, L.;Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. J. Am. Chem. Soc. 2010, 132, 11856. doi: 10.1021/ja103843d
(13) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
(14) Yin,W. J.; Tang, H.;Wei, S. H.; Al-Jassim, M. M.; Turner, J.; Yan, Y. Phys. Rev. B 2010, 82, 045106. (15) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Appl. Phys. Lett. 2002, 81, 454. doi: 10.1063/1.1493647
(16) Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. J. Mater. Chem. A 2014, 2, 637. (17) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
(18) Valentin, C. D.; Pacchioni, G. J. Phys. Chem. C 2009, 113, 20543. doi: 10.1021/jp9061797
(19) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134, 3659. doi: 10.1021/ja211369s
(20) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.;Wang, R. X.; Xu, A.W. J. Mater. Chem. A 2014, 2, 4429. doi: 10.1039/c3ta14484d
(21) Zou, X. X.; Liu, J. K.; Sun, J.; Zuo, F.; Chen, J. S.; Feng, P. Y. Chem. -Eur. J. 2013, 19, 2866. doi: 10.1002/chem.201202833
(22) Yu, X. M.; Kim, B.; Kim, Y. K. ACS Catal. 2013, 3, 2479. doi: 10.1021/cs4005776
(23) Kumar, C. P.; Gopal, N. O.;Wang, T. C.;Wong, M. S.; Ke, S. C. J. Phys. Chem. B 2006, 110, 5223. (24) Luan, Y. B.; Jing, L. Q.; Xie, M. Z.; Shi, X.; Fan, X. X.; Cao, Y.; Feng, Y. J. Phys. Chem. Chem. Phys. 2012, 14, 1352. doi: 10.1039/c1cp22907a
(25) Cui, H. Q.; Cao, Y.; Jing, L. Q.; Luan, Y. B.; Li, N. ChemPlusChem 2014, 79, 318. doi: 10.1002/cplu.v79.2
(26) Liu, T.; You, H.; Chen, Q.W.;Wang, Z. C. Environ. Sci. 2009, 30, 2560. [刘婷, 尤宏, 陈其伟, 汪志超. 环境科学, 2009, 30, 2560.]

[1] WANG Xiu-Xiu, ZHAO Jian-Wei, YU Gang. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1773-1780.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[3] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[4] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[7] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[8] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. Chim. Sin., 2017, 33(3): 602-610.
[9] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[10] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2523-2531.
[11] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2301-2309.
[12] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[13] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2042-2051.
[14] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[15] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.