Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (10): 1957-1962    DOI: 10.3866/PKU.WHXB201408041
Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide
LI Wen-Zhang2, LIU Yang2, LI Jie2, YANG Ya-Hui1, CHEN Qi-Yuan2
1. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, P. R. China;
2. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
Download:   PDF(1044KB) Export: BibTeX | EndNote (RIS)      


Composite films of graphene and tungsten oxide were fabricated by dip-coating with ammonium metatungstate as the precursor and polyvinylpyrrolidone as the bridging agent. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Photocurrent test, electrochemical impedance spectroscopy (EIS), transient photocurrent spectroscopy,and intensity-modulated photocurrent spectroscopy were used to study the transfer process and transport behavior of the charge carriers at the interface of the film electrodes. The results showed that the tungsten oxide nanoparticles were sufficiently composited with graphene. The efficiency of photoelectric conversion improved significantly. The transient constant and the electron-hole lifetime increased after the incorporation of graphene. The electron transit time of the composite film was reduced and was found to be only 47.5% of that of the tungsten oxide film.

Key wordsTungsten oxide      Graphene      Composite film      Photoelectrochemistry      Interfacial electron transfer     
Received: 15 May 2014      Published: 04 August 2014
MSC2000:  O644  

The project was supported by the National High Technology Research and Development Program of China (863) (2011AA050528), National Natural Science Foundation of China (21171175), and Hunan Provincial Natural Science Foundation, China (13JJ6003).

Corresponding Authors: YANG Ya-Hui     E-mail:
Cite this article:

LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide. Acta Phys. Chim. Sin., 2014, 30(10): 1957-1962.

URL:     OR

(1) Pan, J. H.; Lee,W. I. Chem. Mater. 2006, 18, 847. doi: 10.1021/cm0522782
(2) Sivula, K.; Formal, F. L.; Grátzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a
(3) Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928. doi: 10.1021/nl2000743
(4) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109, 22958. doi: 10.1021/jp053053h
(5) Cui, X.; Guo, L.; Cui, F.; He, Q.; Shi, J. J. Phys. Chem. C 2009, 113, 4134. (6) Xiang, Q.; Meng, G. F.; Zhao, H. B.; Zhang, Y.; Li, H.; Ma,W. J.; Xu, J. Q. J. Phys. Chem. C 2010, 114, 2049. doi: 10.1021/jp909742d
(7) Zheng, H.; Tachibana, Y.; Kalantar zadeh, K. Langmuir 2010, 26, 19148. doi: 10.1021/la103692y
(8) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y.W.; Chen, L. J. Small 2007, 3, 658. (9) Cole, B.; Marsen, B.; Miller, E.; Yan, Y.; To, B.; Jones, K.; Al-Jassim, M. J. Phys. Chem. C 2008, 112, 5213. doi: 10.1021/jp077624c
(10) Long, M.; Cong, Y.; Li, X. K.; Cui, Z.W.; Dong, Z. J.; Yun, G. M. Acta Phys.-Chim. Sin 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263
(11) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
(12) Zhang, J.; Xiong, Z.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634. doi: 10.1039/c0jm03827j
(13) Li, B.; Cao, H. J. Mater. Chem. 2011, 21, 3346. doi: 10.1039/c0jm03253k
(14) Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12, 6464. doi: 10.1021/nl303961c
(15) Guo, J.; Li, Y.; Zhu, S.; Chen, Z.; Liu, Q.; Zhang, D.; Moon,W. J.; Song, D. M. RSC Advances 2012, 2, 1356. doi: 10.1039/c1ra00621e
(16) An, X.; Yu, J. C.;Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. J. Mater. Chem. 2012, 22, 8525. doi: 10.1039/c2jm16709c
(17) Yang, P.; Huang, H.; Yue, Z.; Li, G.;Wang, X.; Huang, J.; Du, Y. J. Mater. Chem. A 2013, 1, 15110. doi: 10.1039/c3ta13433d
(18) Wu, H.; Xu, M.; Da, P.; Li,W.; Jia, D.; Zheng, G. Phys. Chem. Chem. Phys. 2013, 15, 16138. doi: 10.1039/c3cp53051e
(19) Tang, L.;Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Adv. Funct. Mater. 2009, 19, 2782. doi: 10.1002/adfm.v19:17
(20) Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3, 3670. doi: 10.1039/c1nr10610d
(21) Dang, H.; Dong, X.; Dong, Y.; Huang, J. Int. J. Hydrog. Energy 2013, 38, 9178. doi: 10.1016/j.ijhydene.2013.05.061
(22) Radecka, M.; Sobas, P.;Wierzbicka, M.; Rekas, M. Physica B: Condensed Matter 2005, 364, 85. doi: 10.1016/j.physb.2005.03.039
(23) Hagfeldt, A.; Lindström, H.; Södergren, S.; Lindquist, S. E. J. Electroanal. Chem. 1995, 381, 39. doi: 10.1016/0022-0728(94)03622-A
(24) Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Nano Lett. 2010, 11, 203.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] RUAN Yi-Fan, ZHANG Nan, ZHU Yuan-Cheng, ZHAO Wei-Wei, XU Jing-Juan, CHEN Hong-Yuan. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. Chim. Sin., 2017, 33(3): 476-485.
[9] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[10] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[11] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[12] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.