Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (12): 2249-2255    DOI: 10.3866/PKU.WHXB201408283
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Adsorption of Thiophene on M(111) (M=Pd, Pt, Au) Surfaces
SHI Wei, ZHANG Lian-Yang, XIA Sheng-Jie, NI Zhe-Ming
Laboratory of Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Download:   PDF(1020KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption of thiophene on Pd(111), Pt(111), and Au(111) surfaces was investigated by periodic density functional theory (DFT) calculations at the GGA/PW91 level. The results showed that the adsorption energies of thiophene on the different surfaces following the order Pd(111)>Pt(111)>Au(111). The adsorption structure on the Au(111) surface showed almost no change, and the most stable adsorption structure was tilted adsorption on the top site through the S atom of thiophene. For the Pd(111) and Pt(111) surfaces, the most stable adsorption structure was parallel adsorption to the hollow site through the ring plane of thiophene. After adsorption, the H atom of thiophene moved upward and the structure of thiophene was distorted and folded. The aromaticity of thiophene was disrupted and the C atoms were characteristic of sp3 hybridization. Furthermore, the electrons of the M(111) surfaces and thiophene were redistributed after adsorption. The electron transfer from thiophene to the M(111) surfaces was in the order Pd(111)>Pt(111)>Au(111). The electrons of the M(111) surfaces were also back-denoted to the empty orbitals of the thiophene molecule. These processes eventually lead to the adsorption of thiophene on the M(111) surfaces.



Key wordsPd(111) surface      Pt(111) surface      Au(111) surface      Thiophene      Adsorption     
Received: 01 July 2014      Published: 28 August 2014
MSC2000:  O641  
Corresponding Authors: NI Zhe-Ming     E-mail: jchx@zjut.edu.cn
Cite this article:

SHI Wei, ZHANG Lian-Yang, XIA Sheng-Jie, NI Zhe-Ming. Adsorption of Thiophene on M(111) (M=Pd, Pt, Au) Surfaces. Acta Phys. Chim. Sin., 2014, 30(12): 2249-2255.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201408283     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I12/2249

(1) Parola, V. L.; Testa, M. L.; Venezia, A. M. Appl. Catal. BEnviron. 2012, 119, 248.
(2) Li, J.; Huang, H. N.; Liang,W. H.; Gao, Q.; Duan, Z. Org. Lett. 2013, 2, 282.
(3) Urban, S.; Beiring, B.; Ortega, N.; Paul, D.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 15241. doi: 10.1021/ja306622y
(4) Zhang, B. Y.; Jiang, Z. X.; Li, J.; Zhang, Y. N.; Lin, F.; Liu, Y.; Li, C. J. Catal. 2012, 287, 5. doi: 10.1016/j.jcat.2011.11.003
(5) Rang, H.; Kann, J.; Oja, V. Oil Shale 2006, 23, 164.
(6) Lu,W. T.; Chen, J. C.; Feng, J.; Yu, J. Rare Metal. Mat. Eng. 2012, 41, 184.
(7) Mittendorfer, F.; Hafner, J. J. Catal. 2003, 214, 234. doi: 10.1016/S0021-9517(02)00149-5
(8) Zaera, F.; Kollin, E. B.; Gland, J. L. Surf. Sci. 1987, 184, 75. doi: 10.1016/S0039-6028(87)80273-X
(9) Zhu, H. Y.; Lu, X. Q.; Guo,W. Y.; Li, L. F.; Zhao, L. M.; Shan, H. H. J. Mol. Catal. A-Chem. 2012, 363-364, 18.
(10) Cocco, R. A.; Tatarchuk, B. J. Surf. Sci. 1989, 218, 127. doi: 10.1016/0039-6028(89)90623-7
(11) Terada, S.; Yokoyama, T.; Sakano, M.; Imanishi, A.; Kitajima, Y.; Kiguchi, M.; Okamoto, Y.; Ohta, T. Surf. Sci. 1998, 414, 107. doi: 10.1016/S0039-6028(98)00495-6
(12) Sato, H.; Ushiyama, S.; Sogo, M.; Aoki, M.; Shudo, K.; Sugawara, T.;Yanagisawa, S.; Morikawa, Y.; Masuda, S. Phys. Chem. Chem. Phys. 2012, 14, 15412. doi: 10.1039/c2cp42700a
(13) Zhou, J.; Yang, Y. X.; Liu, P.; Camillone, N.; White, M. G. J. Phys. Chem. C 2010, 114, 13670. doi: 10.1021/jp1025009
(14) Heermann, D.W. Computer Simulation Methods in Theoretical Physics; Springer-Verlag: Heidelberg, 1990.
(15) Leach, A. R. Molecular Modelling: Principles and Applications; AddisonWesley Longman Limitted Press: Essex, 2001.
(16) Sitamraju, S.; Janik, M. J.; Song, C. S. Top. Catal. 2012, 55, 229. doi: 10.1007/s11244-012-9807-1
(17) Callsen, M.; Atodiresei, N.; Caciuc, V.; Blugel, S. Phys. Rev. B 2012, 86, 1.
(18) Wang, L. T.; Sun, Z. L.; Ding, Y.; Chen, Y. C.; Li, Q.; Xu, M.; Li, H. L.; Song, L. J. Appl. Surf. Sci. 2011, 257, 7539. doi: 10.1016/j.apsusc.2011.03.115
(19) Shi,W.; Zhang, L. Y.; Ni, Z. M.; Xiao, X. C.; Xia, S. J. RSC Adv. 2014, 4, 27003.
(20) Tang, F.W.; Guo,W. M.; Tang, N. N.; Pei, J. Y.; Xu, X. Acta Phys. -Chim. Sin. 2013, 29, 2198. [唐法威, 郭为民, 唐楠楠,裴俊彦, 许旋. 物理化学学报, 2013, 29, 2198.] doi: 10.3866/PKU.WHXB201307294
(21) Xiao, X. C.; Shi,W.; Ni, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 1456. [肖雪春, 施炜, 倪哲明. 物理化学学报, 2014, 30, 1456.] doi: 10.3866/PKU.WHXB201406091
(22) Ni, Z. M.; Shi,W.; Xia, M. Y.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34, 2353. [倪哲明, 施炜, 夏明玉, 薛继龙. 高等学校化学学报, 2013, 34, 2353.]
(23) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327, 125. doi: 10.1016/S0009-2614(00)00850-2
(24) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Struct. Chem. 2010, 29, 365.
(25) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
(27) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett. 1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404
(28) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(29) Kittel, C. C. Solid State Physics; JohnWiley & Sons: New York, 1976.
(30) Mai, S.W.; Zhou, G. D.; Li,W. J. Advanced Inorganic Structural Chemistry; Peking University Press: Beijing, 2001. [麦松威, 周公度, 李伟基. 高等无机结构化学. 北京: 北京大学出版社, 2001.]
(31) Atsushi, I.; Franck, D.; Jeayoung, L.; Kouhei, M.; Eika, Q.W.; Toshiaki, K. Appl. Catal. A-Gen. 2005, 289, 163. doi: 10.1016/j.apcata.2005.04.056
(32) Higai, S.; Nara, J.; Ohno, T. Surf. Sci. 2006, 600, 685. doi: 10.1016/j.susc.2005.11.033
(33) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588
(34) Teng, B. T.; Zhao, Y.;Wu, F. M.;Wen, X. D.; Chen, Q. P.; Huang,W. X. Surf. Sci. 2012, 606, 1227. doi: 10.1016/j.susc.2012.04.001

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] PEI Tong, PENG Kai, CAI Xin-Yi, YUAN Liang-Jie, XIA Jiang-Bin. Synthesis of Poly(bis-3,4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2550-2558.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] DU Jun, WU Xiang-Ying, PAN Xing-Peng, YU Jiang. Oxygenation and Oxidation Desulfurization Properties of CeO2/NaY Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2337-2345.
[14] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[15] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.